scholarly journals Description of two cryptic species of the Amolops ricketti group (Anura, Ranidae) from southeastern China

ZooKeys ◽  
2019 ◽  
Vol 812 ◽  
pp. 133-156 ◽  
Author(s):  
Zhi-Tong Lyu ◽  
Lin-Sheng Huang ◽  
Jian Wang ◽  
Yuan-Qiu Li ◽  
Hong-Hui Chen ◽  
...  

Two cryptic species, which were previously reported as Amolopsricketti, are revealed on the basis of significant morphological and genetic divergences. Amolopssinensissp. n. from central Guangdong, northeastern Guangxi and southwestern Hunan can be distinguished by the longitudinal glandular folds on the skin of the shoulders and other character combinations. Amolopsyatsenisp. n. from the coastal hills of west Guangdong can be distinguished by the dense tiny round translucent, or white, spines on the dorsal skin of the body, dorsal and dorsolateral skin of the limbs, and other character combinations. The phylogenetic interrelationships of the A.ricketti group have been inferred as (A.wuyiensis + A.ricketti) + (A.yunkaiensis + (A.albispinus + (A.sinensissp. n. + A.yatsenisp. n.))). This work indicates that the current records of A.ricketti might be a species complex composed of multiple species, and further work is needed to figure out this puzzle.

ZooKeys ◽  
2020 ◽  
Vol 914 ◽  
pp. 127-159 ◽  
Author(s):  
Zhi-Tong Lyu ◽  
Ke-Yuan Dai ◽  
Yao Li ◽  
Han Wan ◽  
Zhe-Yi Liu ◽  
...  

Three cryptic species, which were previously reported as Nidirana adenopleura, are revealed on the basis of comprehensive approaches. Nidirana guangdongensis Lyu, Wan, and YY Wang, sp. nov. is distributed in Nanling Mountains and southern Luoxiao Mountains, Nidirana mangveni Lyu, Qi, and YY Wang, sp. nov. is known from northern Zhejiang, and Nidirana xiangica Lyu and YY Wang, sp. nov. occurs in Xiangjiang River Basin, while the true Nidirana adenopleura is designated from Taiwan Island, northern Fujian, southern Zhejiang, and central Jiangxi. These three new species can be distinguished from all congeners by significant divergences in the mitochondrial 16S and CO1 genes, differences in advertisement calls, and the combination of multiple characteristics. This work indicates that the current records of Nidirana adenopleura should be of a species complex composed of multiple species and have clarified the true identity of N. adenopleura.


2020 ◽  
Author(s):  
Aleksandra Walczyńska ◽  
Manuel Serra

AbstractThe body size response to temperature is one of the most recognizable but still poorly understood ecological phenomena. Other covarying environmental factors are frequently invoked as either affecting the strength of that response or even driving this pattern. We tested the body size response in five species representing the Brachionus plicatilis cryptic species complex, inhabiting 10 brackish ponds with different environmental characteristics. Principal Component Analysis selected salinity and the oxygen concentration as the most important factors, while temperature and pH were less influential. Path analysis showed a positive interclonal effect of pH on body size. At the interspecific level, the size response was species and factor dependent. Under the lack of a thermos-oxygenic relationship, the expected negative response of size to temperature disappeared, but a positive response of size to oxygen remained. Our results confirm the driving role of oxygen in determining the size-to-temperature patterns observed in the field.


2021 ◽  
Author(s):  
Giuseppe Zuccarello ◽  
N Muangmai ◽  
Maren Preuss ◽  
LB Sanchez ◽  
SL De Göer ◽  
...  

© 2015 International Phycological Society. The question of whether morphological differences observed in specimens is due to multiple species or one variable species has always caused problems for taxonomists. The most recent taxonomic treatment of the 'Bostrychia tenella species complex' suggested that much of the morphological variation represented a single highly variable entity. We used molecular data from all three genomes to clarify the phylogeny, species status and phylogeography of samples collected worldwide and also in sympatry of this complex. Our data strongly support five genetic species in this complex, but only three morphological entities were recognized. The first, divided into two genetic species, fits characters associated with B. binderi, occasionally possessing short monosiphonous determinate laterals but lacking them most of the time. We therefore resurrect B. binderi, even though we could not assign a name to either of the two genetic species, as we are missing molecular evidence from the type specimen. One genetic species was morphologically recognized as B. montagnei. Another lineage consisted of the two genetic species that fall into a new circumscription of B. tenella, with long monosiphonous determinate laterals. Again we were unable to assign either of these two lineages to a type, nor could we find morphological differences between the two lineages. Many of the genetic species have worldwide distributions, except for B. montagnei, which appears to be restricted to the Americas. Our molecular-assisted taxonomy has helped clarify some of the morphological variation within the B. tenella species complex into three named species, but two cryptic species were still recognized that remain morphologically cryptic. This is an Accepted Manuscript of an article published by Taylor & Francis in 'Phycologia' on 2015-05-01, available online: https://www.tandfonline.com/10.2216/15-005.1.


2021 ◽  
Author(s):  
Giuseppe Zuccarello ◽  
N Muangmai ◽  
Maren Preuss ◽  
LB Sanchez ◽  
SL De Göer ◽  
...  

© 2015 International Phycological Society. The question of whether morphological differences observed in specimens is due to multiple species or one variable species has always caused problems for taxonomists. The most recent taxonomic treatment of the 'Bostrychia tenella species complex' suggested that much of the morphological variation represented a single highly variable entity. We used molecular data from all three genomes to clarify the phylogeny, species status and phylogeography of samples collected worldwide and also in sympatry of this complex. Our data strongly support five genetic species in this complex, but only three morphological entities were recognized. The first, divided into two genetic species, fits characters associated with B. binderi, occasionally possessing short monosiphonous determinate laterals but lacking them most of the time. We therefore resurrect B. binderi, even though we could not assign a name to either of the two genetic species, as we are missing molecular evidence from the type specimen. One genetic species was morphologically recognized as B. montagnei. Another lineage consisted of the two genetic species that fall into a new circumscription of B. tenella, with long monosiphonous determinate laterals. Again we were unable to assign either of these two lineages to a type, nor could we find morphological differences between the two lineages. Many of the genetic species have worldwide distributions, except for B. montagnei, which appears to be restricted to the Americas. Our molecular-assisted taxonomy has helped clarify some of the morphological variation within the B. tenella species complex into three named species, but two cryptic species were still recognized that remain morphologically cryptic. This is an Accepted Manuscript of an article published by Taylor & Francis in 'Phycologia' on 2015-05-01, available online: https://www.tandfonline.com/10.2216/15-005.1.


2014 ◽  
Vol 25 (1-2) ◽  
pp. 61-68 ◽  
Author(s):  
V. I. Monchenko ◽  
L. P. Gaponova ◽  
V. R. Alekseev

Crossbreeding experiments were used to estimate cryptic species in water bodies of Ukraine and Russia because the most useful criterion in species independence is reproductive isolation. The problem of cryptic species in the genus Eucyclops was examined using interpopulation crosses of populations collected from Baltic Sea basin (pond of Strelka river basin) and Black Sea basin (water-reservoires of Dnieper, Dniester and Danube rivers basins). The results of reciprocal crosses in Eucyclops serrulatus-group are shown that E. serrulatus from different populations but from water bodies belonging to the same river basin crossed each others successfully. The interpopulation crosses of E. serrulatus populations collected from different river basins (Dnipro, Danube and Dniester river basins) were sterile. In this group of experiments we assigned evidence of sterility to four categories: 1) incomplete copulation or absence of copulation; 2) nonviable eggs; 3) absence of egg membranes or egg sacs 4) empty egg membranes. These crossbreeding studies suggest the presence of cryptic species in the E. serrulatus inhabiting ecologically different populations in many parts of its range. The same crossbreeding experiments were carries out between Eucyclops serrulatus and morphological similar species – Eucyclops macruroides from Baltic and Black Sea basins. The reciprocal crossings between these two species were sterile. Thus taxonomic heterogeneity among species of genus Eucyclops lower in E. macruroides than in E. serrulatus. The interpopulation crosses of E. macruroides populations collected from distant part of range were fertile. These crossbreeding studies suggest that E. macruroides species complex was evaluated as more stable than E. serrulatus species complex.


2021 ◽  
Author(s):  
Darwin M Morales-Martínez ◽  
Miguel E Rodríguez-Posada ◽  
Héctor E Ramírez-Chaves

2011 ◽  
Vol 115 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Tor Carlsen ◽  
Ingeborg Bjorvand Engh ◽  
Cony Decock ◽  
Mario Rajchenberg ◽  
Håvard Kauserud

2012 ◽  
Vol 29 (6) ◽  
pp. 403 ◽  
Author(s):  
Natsumi Kanzaki ◽  
Erik J. Ragsdale ◽  
Matthias Herrmann ◽  
Werner E. Mayer ◽  
Ralf J. Sommer

2004 ◽  
Vol 76 (2) ◽  
pp. 316-324 ◽  
Author(s):  
Matija Gogala ◽  
Tomi Trilar

Recent bioacoustic investigations have shown that Cicadetta montana Scopoli 1772 is a complex of morphologically similar sister species that are best characterized by their song patterns. At the type locality of C. montana, only mountain cicadas with simple, long lasting song phrases were heard, recorded and collected. Therefore, we have good reasons to suggest that this type of song is characteristic for C. montana s. str. Boulard described a song of C. montana from France with phrases composed of a long and a short echeme; this type of song is characteristic for cicadas morphologically corresponding to C. montana var. brevipennis Fieber 1876; we suggest to raise this taxon to species level. On the basis of specific song, Puissant and Boulard described C. cerdaniensis from Pyrénées. A similar case was the discovery and description of C. montana macedonica Schedl 1999 from Macedonia; since these Macedonian cicadas are sympatric with at least two other cryptic species in the C. montana group and molecular investigations showed substantial genetic differences between C. macedonica and C. montana or C. brevipennis, we conclude that this taxon should also be raised to species level. Songs of closely related C. podolica and Korean mountain cicada are presented as well.


2018 ◽  
Vol 14 (11) ◽  
pp. 20180498 ◽  
Author(s):  
Sofia Paraskevopoulou ◽  
Ralph Tiedemann ◽  
Guntram Weithoff

Under global warming scenarios, rising temperatures can constitute heat stress to which species may respond differentially. Within a described species, knowledge on cryptic diversity is of further relevance, as different lineages/cryptic species may respond differentially to environmental change. The Brachionus calyciflorus species complex (Rotifera), which was recently described using integrative taxonomy, is an essential component of aquatic ecosystems. Here, we tested the hypothesis that these (formerly cryptic) species differ in their heat tolerance. We assigned 47 clones with nuclear ITS1 (nuITS1) and mitochondrial COI (mtCOI) markers to evolutionary lineages, now named B. calyciflorus sensu stricto (s.s.) and B. fernandoi . We selected 15 representative clones and assessed their heat tolerance as a bi-dimensional phenotypic trait affected by both the intensity and duration of heat stress. We found two distinct groups, with B. calyciflorus s.s. clones having higher heat tolerance than the novel species B. fernandoi . This apparent temperature specialization among former cryptic species underscores the necessity of a sound species delimitation and assignment, when organismal responses to environmental changes are investigated.


Sign in / Sign up

Export Citation Format

Share Document