substrate affinities
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 5)

H-INDEX

20
(FIVE YEARS 0)

ACS Catalysis ◽  
2021 ◽  
Vol 11 (19) ◽  
pp. 11885-11896
Author(s):  
Elfriede Dall ◽  
Vesna Stanojlovic ◽  
Fatih Demir ◽  
Peter Briza ◽  
Sven O. Dahms ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (2) ◽  
pp. 80
Author(s):  
Bo Pilgaard ◽  
Marlene Vuillemin ◽  
Jesper Holck ◽  
Casper Wilkens ◽  
Anne S. Meyer

Alginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.2.x), categorized as polysaccharide lyases (PLs) belonging to 12 different PL families. Until now, the vast majority of the alginate lyases have been found in bacteria. We report here the first extensive characterization of four alginate lyases from a marine fungus, the ascomycete Paradendryphiella salina, a known saprophyte of seaweeds. We have identified four polysaccharide lyase encoding genes bioinformatically in P. salina, one PL8 (PsMan8A), and three PL7 alginate lyases (PsAlg7A, -B, and -C). PsMan8A was demonstrated to exert exo-action on polymannuronic acid, and no action on alginate, indicating that this enzyme is most likely an exo-acting polymannuronic acid specific lyase. This enzyme is the first alginate lyase assigned to PL8 and polymannuronic acid thus represents a new substrate specificity in this family. The PL7 lyases (PsAlg7A, -B, and -C) were found to be endo-acting alginate lyases with different activity optima, substrate affinities, and product profiles. PsAlg7A and PsMan8A showed a clear synergistic action for the complete depolymerization of polyM at pH 5. PsAlg7A depolymerized polyM to mainly DP5 and DP3 oligomers and PsMan8A to dimers and monosaccharides. PsAlg7B and PsAlg7C showed substrate affinities towards both polyM and polyG at pH 8, depolymerizing both substrates to DP9-DP2 oligomers. The findings elucidate how P. salina accomplishes alginate depolymerization and provide insight into an efficient synergistic cooperation that may provide a new foundation for enzyme selection for alginate degradation in seaweed bioprocessing.


2020 ◽  
Author(s):  
Ekaterina Y. Gottshall ◽  
Sam J. Bryson ◽  
Kathryn I. Cogert ◽  
Matthieu Landreau ◽  
Christopher J. Sedlacek ◽  
...  

ABSTRACTThe discovery of complete aerobic and anaerobic ammonia-oxidizing bacteria (Comammox and Anammox) significantly altered our understanding of the global nitrogen cycle. A high affinity for ammonia (Km(app),NH3 ≈ 63nM) and oxygen place the first described isolate, Comammox Nitrospira inopinata in the same trophic category as organisms such as some ammonia-oxidizing archaea. However, N. inopinata has a relatively low affinity for nitrite (Km,NO2 ≈ 449.2μM) suggesting it would be less competitive for nitrite than other nitrite-consuming aerobes and anaerobes. We examined the ecological relevance of the disparate substrate affinities by coupling it with Anammox (Nitrospira inopinata and Brocadia anammoxidans, respectively). Synthetic communities were established in hydrogel granules in which Comammox grew in the aerobic outer layer to provide Anammox with nitrite in the inner anoxic core to form dinitrogen gas. This spatial organization was confirmed with FISH imaging, supporting a mutualistic or commensal relationship. Successful co-habitation of Comammox N. inopinata and Anammox in synthetic granules broadens our limited understanding of the interplay between these two species and offers potential biotechnological applications to study any type of bacterial pairings in a systematic and reproducible manner.


2020 ◽  
Vol 27 (7) ◽  
pp. 568-573
Author(s):  
Debjyoti Boral ◽  
Vamkudoth Koteswara Rao ◽  
Sureshkumar Ramasamy

One of the unique characteristic features of the domain archaea, are the lipids that form the hydrophobic core of their cell membrane. These membrane lipids are characterized by distinctive isoprenoid biochemistry and the building blocks are two core lipid structures, sn-2,3- diphytanyl glycerol diether (archaeol) and sn-2,3-dibiphytanyl diglycerol tetraether (caldarchaeol). Archaeol has two phytanyl chains (C20) in a bilayer structure connected to the glycerol moiety by an ether bond. The enzyme involved in this bilayer formation is Di-O-Geranylgeranyl Glyceryl Phosphate Synthase (DGGGPS), which is a member of a very versatile superfamily of enzymes known as UbiA superfamily. Multiple sequence analysis of the typical members of the UbiA superfamily indicates that the majority of conserved residues are located around the central cavity of these enzymes. Interestingly few of these conserved residues in the human homologs are centrally implicated in several human diseases, on basis of the major mutations reported against these diseases in the earlier clinical studies. It remains to be investigated about the role of these conserved residues in the biochemistry of these enzymes. The binding and active site of these enzymes found to be similar architecture but have different substrate affinities ranging from aromatic to linear compounds. So further investigation of UbiA superfamily may be translated to novel therapeutic and diagnostic application of these proteins in human disease management.


2020 ◽  
Author(s):  
Tânia Filipa Custódio ◽  
Peter Aasted Paulsen ◽  
Kelly May Frain ◽  
Bjørn Panyella Pedersen

AbstractThe human glucose transporters GLUT1 and GLUT3 have a central role in glucose uptake as canonical members of the Sugar Porter (SP) family. GLUT1 and GLUT3 share a fully conserved substrate-binding site with identical substrate coordination, but differ significantly in transport affinity in line with their physiological function. Here we present a 2.4 Å crystal structure of GLUT1 in an inward open conformation and compare it with GLUT3 using both structural and functional data. Our work shows that interactions between a cytosolic “Sugar Porter motif” and a conserved “A motif” stabilize the outward conformational state and increases substrate apparent affinity. Furthermore, we identify a previously undescribed Cl- ion site in GLUT1 and an endofacial lipid/glucose binding site which modulate GLUT kinetics. The results provide a possible explanation for the difference between GLUT1 and GLUT3 glucose affinity, imply a general model for the kinetic regulation in GLUTs and suggest a physiological function for the defining SP sequence motif in the Sugar Porter family.Summary BlurbNew structure of GLUT1 compared to GLUT3 explain different substrate affinities. The result provide a functional rationale for key structural motifs that define the universal Sugar Porter family.


RSC Advances ◽  
2018 ◽  
Vol 8 (64) ◽  
pp. 36915-36926 ◽  
Author(s):  
Rukmankesh Mehra ◽  
Anne S. Meyer ◽  
Kasper P. Kepp

Molecular dynamics derived life times of reactive poses and MMGBSA substrate affinities explain trends in experimentalKMfor laccases.


2017 ◽  
Author(s):  
Rowan Lockwood ◽  
◽  
Carmi Milagros Thompson ◽  
Kelvin W. Ramsey

2016 ◽  
Vol 473 (9) ◽  
pp. 1141-1152 ◽  
Author(s):  
Ernesto A. Verduzco-Castro ◽  
Karolina Michalska ◽  
Michael Endres ◽  
Ana L. Juárez-Vazquez ◽  
Lianet Noda-García ◽  
...  

We investigate the evolution of co-occurring analogous enzymes involved in L-tryptophan and L-histidine biosynthesis in Actinobacteria. Phylogenetic analysis of trpF homologues, a missing gene in certain clades of this lineage whose absence is complemented by a dual-substrate HisA homologue, termed PriA, found that they fall into three categories: (i) trpF-1, an L-tryptophan biosynthetic gene horizontally acquired by certain Corynebacterium species; (ii) trpF-2, a paralogue known to be involved in synthesizing a pyrrolopyrrole moiety and (iii) trpF-3, a variable non-conserved orthologue of trpF-1. We previously investigated the effect of trpF-1 upon the evolution of PriA substrate specificity, but nothing is known about the relationship between trpF-3 and priA. After in vitro steady-state enzyme kinetics we found that trpF-3 encodes a phosphoribosyl anthranilate isomerase. However, mutation of this gene in Streptomyces sviceus did not lead to auxothrophy, as expected from the biosynthetic role of trpF-1. Biochemical characterization of a dozen co-occurring TrpF-2 or TrpF-3, with PriA homologues, explained the prototrophic phenotype, and unveiled an enzyme activity trade-off between TrpF and PriA. X-ray structural analysis suggests that the function of these PriA homologues is mediated by non-conserved mutations in the flexible L5 loop, which may be responsible for different substrate affinities. Thus, the PriA homologues that co-occur with TrpF-3 represent a novel enzyme family, termed PriB, which evolved in response to PRA isomerase activity. The characterization of co-occurring enzymes provides insights into the influence of functional redundancy on the evolution of enzyme function, which could be useful for enzyme functional annotation.


2011 ◽  
Vol 193 (1) ◽  
pp. 50-56 ◽  
Author(s):  
Jeffrey P. Jones ◽  
Carolyn A. Joswig-Jones ◽  
Michelle Hebner ◽  
Yuzhuo Chu ◽  
Dennis R. Koop

2011 ◽  
Vol 115 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Tor Carlsen ◽  
Ingeborg Bjorvand Engh ◽  
Cony Decock ◽  
Mario Rajchenberg ◽  
Håvard Kauserud

Sign in / Sign up

Export Citation Format

Share Document