SIMULATION OF 3D RESIDUAL STRESS FIELD OF SHOT PEENING BY DYNAMIC FINITE ELEMENT ANALYSIS

2006 ◽  
Vol 42 (08) ◽  
pp. 182 ◽  
Author(s):  
Xiang LING
Author(s):  
Giovanni G. Facco ◽  
Patrick A. C. Raynaud ◽  
Michael L. Benson

The Mechanical Stress Improvement Process (MSIP) is generally accepted as an effective method to modify the residual stress field in a given component to mitigate subcritical crack growth in susceptible components [1] [2] [3]. In order to properly utilize MSIP, residual stress prediction is needed to determine the parameters of the MSIP application and the expected final residual stress field in the component afterwards. This paper presents the results of a 2D axisymmetric finite element study to predict weld residual stresses (WRS), and associated flaw growth scenarios, in a thick-walled pressurizer safety nozzle that underwent mitigation by application of MSIP. The authors have developed a finite-element analysis methodology to examine the effect of MSIP application on WRS and flaw growth for various hypothetical welding histories and boundary conditions in a thick-walled pressurizer safety nozzle. In doing so, a wide range of repair scenarios was considered, with the understanding that some bounding scenarios may be impractical for this geometry.


2014 ◽  
Vol 881-883 ◽  
pp. 1447-1450
Author(s):  
Jing Zhang ◽  
Fei Wang

Abstract.The connection mode of reducer with straight tube on both sides are the welding connection. There are two weld at the both side of reducer and there has a great influence on residual stress and deformation in the process of welding . Based on the particularity of reducer welding, the paper is focus on the residual stress and deformation in the process of welding, using large-scale finite element analysis software ANSYS .The DN500X450 reducer model is established.The welding temperature field and residual stress field is analysis and calculation and analysis the influence on temperature and stress distribution of reducer. The results show that the maximum of the temperature and the residual stress is located in the big side and reduce the welding seam, and the obvious deformation also find in the big side and reduce joint . The reducing pipe’s distribution of temperature field and residual stress field are obtained,providing the basis to establish properly and optimize of welding process.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xiangming Qu ◽  
Yongkang Zhang ◽  
Jun Liu

This paper is based on laser shock peening (LSP) system with a flat-topped beam, using robot simulation software to determine the oblique shock angle of different areas of a certain turbine disk mortise. Three-dimensional finite element analysis was used to study residual stress field of Ni-based alloy GH4169 under flat-topped laser oblique shocking. The effects of different laser energy and different shocking number on residual stress field of Ni-based alloy GH4169 of LSP were studied. Three-dimensional finite element analysis used super-Gaussian beam distribution to construct spatial distribution model of shock wave induced by LSP. The simulation results were in good agreement with the experimental results. The research results will provide a theoretical basis for LSP of certain turbine disk mortise.


Sign in / Sign up

Export Citation Format

Share Document