cold expansion
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 34)

H-INDEX

22
(FIVE YEARS 1)

Author(s):  
Kuanyu Liu ◽  
Xinsheng Yang ◽  
Li Zhou ◽  
Ming Li ◽  
Weijin Zhu

The reaming process of the 6061 aluminum alloy plate after cold expansion with split sleeve was simulated by finite element (FE) method based on Abaqus/CAE, the relationship between the reaming depths and the distribution of residual stress fields is obtained by analysis. The fatigue lives of the plate under different reaming depths were calculated by using the fatigue analysis software FE-SAFE, and verified by fatigue tests. The results show that reaming after expansion will increase the residual compressive stress at the hole edge on the entrance surface. In addition, the fatigue life of the specimens increases with the increase of the reaming depth, and the best fatigue gain of the specimen is obtained when the reaming depth of 0.5 mm.


2022 ◽  
Vol 154 ◽  
pp. 106544
Author(s):  
Shu-Lei Yao ◽  
Xue-Lin Lei ◽  
Run-Zi Wang ◽  
Cen-Yao He ◽  
Xian-Cheng Zhang ◽  
...  

Author(s):  
H. K. Kim ◽  
S. S. Carlson ◽  
M. L. Stanfield ◽  
S. Paddea ◽  
F. Hosseinzadeh ◽  
...  

Abstract Background The split sleeve cold expansion process is widely used to improve the fatigue life of fastener holes in the civil and military aircraft industry. The process introduces beneficial compressive residual stresses around the processed hole, but uncertainties remain about the character of the stress field immediately adjacent to the bore of the hole. Objective The primary objective of this study was to implement the contour method with minimising error associated with cutting-induced plasticity to provide detailed and reliable characterisation of the residual stress introduced by the split sleeve cold expansion process. Methods A systematic FE study of plasticity effects by simulating different contour cutting strategies (a single cut, two sequential cuts and a 6-cut sequence) for a cold expanded hole in an aluminium alloy coupon was conducted. The identified ‘optimum’ cutting strategy was then applied experimentally on coupons containing a hole that had been processed to 3.16% applied expansion. Results The FE study of different cutting simulations show that the locations of the stress error is consistent with the location where cutting-induced plasticity accumulated and that the magnitude and locations of stress re-distribution plasticity can be controlled by an optimised cutting strategy. In order to validate this hypothesis a high quality contour measurement was performed, showing that accurate near bore stress results can be achieved by the proposed 6-cut approach that controls cutting induced plasticity. Conclusions The present work has demonstrated that detailed FE simulation analysis can be a very effective tool in supporting the development of an optimum cutting sequence and in making correct choices of boundary conditions. Through optimizing these key aspects of the cutting sequence one is much more likely to have a successful, low error contour residual stress result.


Author(s):  
Mithun K Dey ◽  
Dave Kim ◽  
Hua Tan

Split sleeve cold expansion (SSCE) is a crucial cost-effective process to improve the fatigue life of metallic structures with holes in the aerospace industry. In this study, the effects of the workpiece material’s yield strength (290.9 MPa to 377.8 MPa) and the applied SSCE expansion percentage (3.330% to 4.377%) on mandrel pulling force and residual stresses were investigated numerically for aluminum 2024-T351. A three-dimensional finite element (FE) model was developed to simulate the SSCE process using a commercial FE software, ABAQUS. The model geometries, material non-linearities, and contact conditions were adopted according to aerospace industrial applications’ standards. After the numerical model was validated with the published data, a parametric study with variable material properties and expansion percentage was conducted using the FE model. Our parametric study shows that an increase in both the Al workpiece’s yield strength and SSCE expansion percentage can improve the induced residual stresses in the hoop direction around the cold expanded hole; however, the workpiece’s yield strength has a higher impact on the residual stress field. The in-process pulling force during the SSCE process increases with increasing workpiece yield strength and expansion percentage.


Author(s):  
Giovanni Pio Pucillo ◽  
Alessandro Carrabs ◽  
Stefano Cuomo ◽  
Adam Elliott ◽  
Michele Meo

Sign in / Sign up

Export Citation Format

Share Document