ULTRA-PRECISION GRINDING OF BK7 OPTICAL GLASS USING COARSE-GRAINED ELECTROPLATED DIAMOND WHEEL

2006 ◽  
Vol 42 (10) ◽  
pp. 95 ◽  
Author(s):  
Qingliang ZHAO
Procedia CIRP ◽  
2018 ◽  
Vol 77 ◽  
pp. 130-133
Author(s):  
Takumi Suetomi ◽  
Yasuhiro Kakinuma ◽  
Masahiko Fukuta ◽  
Katsutoshi Tanaka

2007 ◽  
Vol 329 ◽  
pp. 27-32 ◽  
Author(s):  
Seung Yub Baek ◽  
Jung Hyung Lee ◽  
Eun Sang Lee ◽  
H.D. Lee

To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with the mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and with the spherical lens of BK7. The optimization of grinding conditions with respect to ground surface roughness and profiles accuracy is investigated by design of experiments.


Author(s):  
Ling L Zhao ◽  
Qing L Zhao ◽  
Guo W Jin ◽  
Xiao J Kang ◽  
Xiao W Xin

2007 ◽  
Vol 364-366 ◽  
pp. 578-583 ◽  
Author(s):  
Qing Liang Zhao ◽  
Ekkard Brinksmeier ◽  
Otmann Riemer ◽  
Kai Rickens

In order to realize ductile machining of optical glasses using mono-layer nickel electroplated coarse-grained diamond grinding wheel, a novel conditioning technique features using a copper bonded diamond grinding wheels of 15m grain size dressed by ELID (electrolytic inprocess dressing) to condition the 46m grain sized diamond wheel has been developed. During the conditioning process, a force transducer was used to monitor the conditioning force, a coaxial optical distance measurement system was used to in-situ monitor the modified wheel surface status. White-light interferometry (WLI), scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the conditioned wheel surface status as well as the ground optical glass surface topography correspondingly. The experimental result indicates that a minimized wheel radial run-out error of less than 2μm as well as the top-flattened diamond grains of constant wheel peripheral envelop profile were generated on a 5-axis ultra-precision machine tool. The grinding experiment proved that the well conditioned 46μm coarse-grained diamond wheel can be used in realizing the ductile grinding of optical glass BK7, which indicates that the newly developed conditioning technique is feasible and applicable to introduce the coarse-grained diamond wheels into precision machining of brittle and hard-to-machine materials.


2012 ◽  
Vol 516 ◽  
pp. 287-292 ◽  
Author(s):  
Ekkard Brinksmeier ◽  
Yildirim Mutlugünes ◽  
Grigory Antsupov ◽  
Kai Rickens

This paper presents advanced tools for ultra precision grinding which offer a high wear resistance and can be used to generate high-quality parts with an ultraprecise surface finish. The first approach features defined dressed, coarse-grained, single layered, metal bonded diamond grinding wheels. These grinding wheels are called Engineered Grinding Wheels and have been dressed by an adapted conditioning process which leads to uniform abrasive grain protrusion heights and flattened grains. This paper shows the results from grinding optical glasses with such Engineered Grinding Wheels regarding the specific forces and the surface roughness. The results show that the cutting mechanism turns into ductile removal and optical surfaces are achievable. On the other hand, the specific normal force F´n increases due to increased contact area of the flattened diamond grains. It is shown that the topography of the Engineered Grinding Wheels has a strong beneficial influence on surface roughness. The second new tool for ultra precision grinding is made of a CVD (Chemical Vapour Deposition) poly-crystalline diamond layer with sharp edges of micrometre-sized diamond crystallites as a special type of abrasive. The sharp edges of the crystallites act as cutting edges which can be used for grinding. It is shown that by using CVD-diamond-coated grinding wheels a high material removal rate and a high surface finish with surface roughness in the nanometre range can be achieved. The CVD-diamond layers exhibit higher wear resistance compared to conventional metal and resin bonded diamond wheels. In conclusion, this paper shows that not only conventional fine grained, multi-layered resinoid diamond grinding wheels but also coarse-grained and binderless CVD-coated diamond grinding wheels can be applied to machine brittle and hard materials by ultra precision grinding.


Sign in / Sign up

Export Citation Format

Share Document