grinding wheels
Recently Published Documents


TOTAL DOCUMENTS

848
(FIVE YEARS 146)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Chao Li ◽  
Jia Duan ◽  
Zhang Xiaohong ◽  
Zhaoyao Shi ◽  
Guangzhi Yuchi ◽  
...  

Abstract In order to enhance the grinding performance of alumina ceramic materials, the surface of the grinding wheels are ablated by laser radiation before grinding, and the three types of leaf-vein bionic grinding wheels with different micro-groove pitches are formed to compare the grinding experiments with normal grinding wheels. The grinding forces and surface roughness were gauged and the morphological characteristics of ground workpiece surfaces were studied. The results showed that with the increase of groove pitch, the normal grinding force was reduced by 9.6-63%, while the tangential grinding force is reduced by 8.3-42%. The groove can promote the flow of coolant, accelerate the heat dissipation and chip removal in the grinding area, reduce the damage of the workpiece and the wear of the grinding wheel, so the vein bionic grinding wheel had more tremendous processing advantages. Among the four kinds of grinding wheels, the leaf-vein bionic grinding wheel with groove pitch equal to 8mm obtained the best grinding effect. The vein-shaped groove had a positive impact on the grinding process.


Author(s):  
Van Nga Tran Thi ◽  
Khanh Nguyen Lam ◽  
Cuong Nguyen Van

In machining processes, grinding is often chosen as the final machining method. Grinding is often chosen as the final machining method. This process has many advantages such as high precision and low surface roughness. It depends on many parameters including grinding parameters, dressing parameters and lubrication conditions. In grinding, the surface roughness of a workpiece has a significant influence on quality of the part. This paper presents a study of the grinding surface roughness predictions of workpieces. Based on the previous studies, the study built a relationship between the abrasive grain tip radius and the Standard marking systems of the grinding wheel for conventional and superabrasive grinding wheels (diamond and CBN abrasive). Based on this, the grinding surface roughness was predicted. The proposed model was verified by comparing the predicted and experimental results. Appling the research results, the surface roughness when grinding three types of steel D3, A295M and SAE 420 with Al2O3 and CBN grinding wheels were predicted. The predicted surface roughness values were close to the experimental values, the average deviation between predictive results and experimental results is 15.11 % for the use of Al2O3 grinding wheels and 24.29 % for the case of using CBN grinding wheels. The results of the comparison between the predicted model and the experiment show that the method of surface roughness presented in this study can be used to predict surface roughness in each specific case. The proposed model was verified by comparing the predicted and measured results of surface hardness. This model can be used to predict the surface hardness when surface grinding


2022 ◽  
Vol 2022 (1) ◽  
pp. 29-36
Author(s):  
Vladimir Gusev

The problem of reducing the thermal stress of the grinding process of bearing rings has been viewed. The possibility of reducing the temperature of the treated surface based on the use of precast textured grinding wheels has been presented. Experimental models of pulse, contact, average temperature, velocities and rates of their change in the function of grinding time are found.


2022 ◽  
Vol 16 (1) ◽  
pp. 21-31
Author(s):  
Atsushi Ezura ◽  
Katsufumi Inazawa ◽  
Kazuhiro Omori ◽  
Yoshihiro Uehara ◽  
Nobuhide Itoh ◽  
...  

Elastic grinding wheels have previously been adopted for the development of the mirror surface finishing method for concave spheres. In this study, new conductive elastic grinding wheels, to which electrolytic in-process dressing (ELID) can be applied, are developed; the aim of the study is to address the challenge of maintaining a constant removal rate for rubber bond wheels. When ELID grinding is performed using a non-diene (isobutane isoprene rubber, IIR)-based wheel, a larger removal amount is achieved, and a higher-quality surface is also achieved compared to a diene (acrylonitrile-butadiene rubber, NBR)-based wheel. In addition, to investigate the effect of grinding wheel bond hardness on the removal amount and ground shape accuracy, grinding wheels with various levels of hardness are prepared by controlling the amount of carbon black contained in them, and grinding experiments are conducted. Thus, a larger removal amount is achieved using a harder grinding wheel, but the roughness of the ground surfaces deteriorates. Therefore, in practice, it is necessary to select an appropriate grinding wheel that can achieve both productivity and surface quality. Finally, to obtain a high-quality mirror finish on a concave spherical surface, ELID grinding is performed on the workpieces as is done for spherical lens molds. Thus, high-quality mirror surfaces with roughness Ra < 10 nm were generated. When the work pieces are ground using a grinding wheel of the same radius, excessive removal occurs at the edge of the concave spherical profile, decreasing the form accuracy. Numerical simulation demonstrates that chamfering of the grinding wheel is effective for improving the shape accuracy. The results of this study are expected to contribute to automation and cost reduction in the mirror-finishing process for concave molds.


2022 ◽  
Author(s):  
A. Korotkov

Abstract. The quality of grinding of bearing races is related to their performance and durability. The aim of this work is to establish how the machining quality of bearing rings depends on the characteristics of grinding wheels, in particular, on such a parameter as the shape of abrasive grains. Several batches of experimental grinding wheels were made, containing grains of different shapes (from isometric to lamellar varieties). Quantitatively, the shape of the grains was estimated by the shape factor parameter (SF), which is equal to the ratio of the diameters of inscribed and circumscribed circles in the contours of the used grains. The shape factor was determined using a scanner or a digital microscope and a special computer program. The tests were carried out on circular, plunge, and finishing grinding, using coolant, on a SIW 4E machine in a bearing factory. The machining quality of the bearing rings was assessed by studying the microstructure, microhardness and roughness of their bearing races. The durability of grinding wheels was determined by the number of machined rings before maximum tool wear. It has been established that by a differentiated approach to the choice of grain shapes in the wheel, it is possible to significantly increase its operational capabilities: increase the microhardness of the ground surfaces, reduce the roughness of processing, and increase the durability of grinding wheels.


2022 ◽  
Vol 16 (1) ◽  
pp. 5-11
Author(s):  
Masakazu Fujimoto ◽  
Keisuke Shimizu ◽  
◽  

This paper deals with the microscopic wear characteristics of ceramic (Seeded Gel, SG) grinding wheels used in creep feed grinding. Creep feed grinding experiments with SG grinding wheels were carried out compared to rose-pink alumina (RA) grinding wheels. To clear the wear characteristics of the wheel working surface in creep feed grinding, changes in the shapes of grain cutting edges were observed by a field emission-scanning electron microscope (FE-SEM). This is a self-sharpening phenomenon based on micro fractures generated on the top of SG grain cutting edges. On the other hand, large fracture and attritious wear effected RA grain cutting edges. In addition, the features of any grain cutting edges were evaluated using attritious wear flat percentage. Changes in attritious wear flat percentage of SG grits maintained constant value and were stable. From these results, the influence of wear mode of the grinding wheel on grinding characteristics parameter, such as grinding force and workpiece surface roughness, is understood.


2022 ◽  
Vol 16 (1) ◽  
pp. 3-4
Author(s):  
Takazo Yamada ◽  
Kazuhito Ohashi ◽  
Hirofumi Suzuki ◽  
Akinori Yui

Demand for the high-precision and high-efficiency machining of hard ceramics, such as silicon carbide for semiconductors and hardened steel for molding dies, has significantly increased for optical and medical devices as well as for powered devices in automobiles. Certain types of hard metals can be machined by deterministic precision-cutting processes. However, hard and brittle ceramics, hardened steel for molds, and semiconductor materials have to be machined using precision abrasive technologies, such as grinding, polishing, and ultrasonic vibration technologies that use diamond super abrasives. The machining of high-precision components and their molds/dies using abrasive processes is very difficult due to their complex and nondeterministic natures as well as their complex textured surfaces. Furthermore, the development of new cutting-edge tools or machining methods and the active use of physicochemical phenomena are key to the development of high-precision and high-efficiency machining. This special issue features 11 research papers on the most recent advances in precision abrasive technologies. These papers cover the following topics: - Characteristics of abrasive grains in creep-feed grinding - Quantitative evaluation of the surface profiles of grinding wheels - ELID grinding using elastic wheels - Nano-topographies of ground surfaces - Novel grinding wheels - Grinding characteristics of turbine blade materials - Polishing mechanisms - Polishing technologies using magnetic fluid slurries - Application of ultrasonic vibration machining - Turning and rotary cutting technologies This issue is expected to help its readers to understand recent developments in abrasive technologies and to lead to further research. We deeply appreciate the careful work of all the authors, and we thank the reviewers for their incisive efforts.


2022 ◽  
pp. 108830
Author(s):  
Wei Zhou ◽  
Genyu Chen ◽  
Huajun Pan ◽  
Kun Cao ◽  
Fengrong Luo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document