Ultra-precision grinding machine design and application in grinding the thin-walled complex component with small ball-end diamond wheel

2018 ◽  
Vol 101 (5-8) ◽  
pp. 2097-2110 ◽  
Author(s):  
Tingzhang Wang ◽  
Jian Cheng ◽  
Henan Liu ◽  
Mingjun Chen ◽  
Chunya Wu ◽  
...  
2020 ◽  
Vol 10 (6) ◽  
pp. 2030
Author(s):  
Lai Hu ◽  
Yipeng Li ◽  
Jun Zha ◽  
Yaolong Chen

In the global machining industry, ultra-precision/ultra-high-speed machining has become a challenge, and its requirements are getting higher and higher. The challenge of precision grinding lies in the difficulty in ensuring the various dimensions and geometric accuracy of the final machined parts. This paper mainly uses the theory of a multi-body system to propose a “double accuracy” theory of manufacturing and measurement. Firstly, the grinding theory with an accuracy of 0.1 μm and the precision three-coordinate measuring machine theory with an accuracy of 0.3 μm are deduced. Secondly, the two theories are analyzed. Aiming to better explain the practicability of the “double accuracy” theory, a batch of motorized spindle parts is processed by a grinding machine. Then the precision three-coordinate measuring machine is used to measure the shape and position tolerances such as the roundness, the squareness, the flatness, and the coaxiality. The results show that the reached roundness of part A and B is 5 μm and 0.5 μm, the squareness is 3 μm and 4.5 μm, and the coaxiality tolerance is 1.2 μm, respectively.


2013 ◽  
Vol 336-338 ◽  
pp. 1014-1019
Author(s):  
Seon Yeol Oh ◽  
Han Seok Bang ◽  
B. Y. Choi ◽  
Woo Chun Choi ◽  
S. J. Cho

A finite element model of an ultra-precision grinding machine that can have high precision and high stiffness is constructed and structural analysis is done with equivalent stiffnesses of linear motion guides by after structural design and the deformation of the grinding machine is obtained. In order to reduce the deformation of the grinding machine that causes bad influence, structural complement is conducted by adding ribs at the lower part of the column. Also, the straightness of the grinding machine is improved by lifting that the base side of the column.


2007 ◽  
Vol 329 ◽  
pp. 27-32 ◽  
Author(s):  
Seung Yub Baek ◽  
Jung Hyung Lee ◽  
Eun Sang Lee ◽  
H.D. Lee

To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the grinding surface roughness and profile accuracy. This paper deals with the mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and with the spherical lens of BK7. The optimization of grinding conditions with respect to ground surface roughness and profiles accuracy is investigated by design of experiments.


2012 ◽  
Vol 516 ◽  
pp. 257-262
Author(s):  
Martin Hünten ◽  
Fritz Klocke ◽  
Olaf Dambon ◽  
Benjamin Bulla

Manufacturing moulds for the wafer-scale replication of precision glass optics sets new demands in terms of grinding tool lifetime and the processes to be applied. This paper will present different approaches to grinding processes and kinematics to machine wafer-scale tungsten carbide moulds with diameters of up to 100 mm and more than 100 single aspheric cavities, each featuring form accuracies in the micron range. The development of these processes will be described and advantages and disadvantages of the approaches derived from practical tests performed on an ultra precision grinding machine (Moore Nanotech 350FG) will be discussed. Finally, a comparison between the developed processes is made where achieved form accuracies and surface topography are analyzed.


2012 ◽  
Vol 566 ◽  
pp. 530-533
Author(s):  
Zhi Hua Sha ◽  
Shao Xing Zhang ◽  
Yi Wang ◽  
Sheng Fang Zhang

Mono-crystalline silicon is the typical substrate material in integrated circuits manufacturing, and machining precision and surface quality of the silicon wafer impacts on the quality and performance of the electronic products directly. Silicon grinding technology has high accuracy, low cost and can obtained high surface quality, which has become the mainstream of silicon ultra-precision machining. Stick-slip of feeding system in silicon ultra-precision grinding machine is an important factor which influencing the machining precision of the silicon wafer. In this paper, based on the structure analysis of feeding system in a certain type of silicon ultra-precision grinding machine, the rigid body coupling virtual prototype model of the feeding system is established using ADAMS, the factors which influencing the stick-slip is analyzed deeply via the dynamic simulation of the virtual prototype.


2021 ◽  
Author(s):  
Yapeng Jia ◽  
Peng Wang ◽  
Hao Zhang ◽  
Hongshun Zhang ◽  
Tianyu Zhao ◽  
...  

2021 ◽  
Author(s):  
Yin Hang ◽  
Wang Sheng ◽  
Zhao Qingliang ◽  
Guo Bing ◽  
Zhao Jianbo

Sign in / Sign up

Export Citation Format

Share Document