Correlation Correction for Doublet Mode Shapes of Cyclic Symmetric Structures

2014 ◽  
Vol 50 (23) ◽  
pp. 59 ◽  
Author(s):  
Zhigang CHU
2021 ◽  
Author(s):  
Florian Jäger ◽  
Ferhat Kaptan ◽  
Lars Panning-Von Scheidt ◽  
Jörg Wallaschek

Abstract Constructive damper concepts are developed and integrated in turbomachinery to reduce vibration amplitudes generated by dynamic loads. The potential damping effectiveness of friction-based damper concepts is strongly dependent on the relative motion between adjacent blades, besides other factors such as normal force. In cyclic symmetric structures the phase difference is determined by the excited nodal diameter, which leads to different damper movements and efficiencies for given mode shapes. Several studies on the investigation of the damper performance of different underplatform damper geometries have been carried out on non-rotating test stands consisting usually of two blades in order to reduce the experimental effort before setting up rotational tests. Based on the existing modes of the two blades and the application of commonly just one shaker, the investigations are limited to the in-phase and out-of-phase modes. In this paper an experimental approach is developed to reduce the gap of transferability between non-rotating and rotational tests to analyze the effects of a variable interblade phase angle on the damping effect of underplatform dampers. For this purpose, a cascaded control system using two shakers is being developed to control the force amplitudes and the phase difference between the response of the two blades. The control algorithm is designed in a model-based way by using a two degrees of freedom oscillator with friction contact and is subsequently integrated in the non-rotating test stand.


2021 ◽  
Vol 12 (1) ◽  
pp. 173-184
Author(s):  
Shuai Wang ◽  
Menghui Liang

Abstract. Cyclic symmetric structures are an important class of structures in the fields of civil and mechanical engineering. In order to avoid accidents due to cracks in such structures, an effective method for crack identification is presented in this paper. First, the dynamic model of cyclic symmetric structures with gapless cracks is developed using a structure's sector model and rotation transformation. Then, the effects of cracks on the free vibration characteristics of a cracked cyclic symmetric structure are addressed, with particular interests in the distortion of mode shapes and the shift and split of natural frequencies. On the basis of crack-induced phenomena, an effective method based on relative indicators of frequency separation is developed for quantitative crack identification. Numerical results illustrate that the relative indicators are sensitive to small cracks and insensitive to the predicting model used during analysis. Finally, the method is validated by experiments conducted on an impeller-shaft assembly. The results show the effectiveness of the frequency separation indicators in crack identification in cyclically symmetric structures.


1993 ◽  
Vol 164 (2) ◽  
pp. 193-206 ◽  
Author(s):  
P. Balasubramanian ◽  
J.G. Jagadeesh ◽  
H.K. Suhas ◽  
A.K. Srivastava ◽  
V. Ramamurti

Author(s):  
W. C. Tai ◽  
I. Y. Shen

This paper is to present an experimental study that measures ground-based response of a spinning, cyclic, symmetric rotor-bearing-housing system. In particular, the study focuses on rotor-housing coupled modes that are significantly dominated by housing deformation. In the experiments, a ball-bearing spindle motor, carrying a disk with four evenly spaced slots (i.e., the rotor), is mounted onto a stationary housing. The housing is a square plate supported with steel spacers at four corners and fixed to the ground. Two different ways are used to excite the rotor-housing system to measure frequency response functions (FRFs). One is to use an automatic hammer tapping at the disk, and the other is to use a piezoelectric actuator attached to the housing. Vibration of the rotor and housing is measured via a laser Doppler vibrometer and a capacitance probe. The experiments consist of two parts. The first part is to obtain FRFs when the rotor is not spinning. The measured FRFs reveal two rotor-housing coupled modes dominated by the housing. Their mode shapes are characterized by one nodal line in housing and one nodal diameter in the rotor. The second part is to obtain waterfall plots when the rotor is spinning at various speeds. The waterfall plots show that the housing dominant modes split into primary branches and secondary branches as the spin speed varies. The primary branches almost do not change with respect to the spin speed. In contrast, the secondary branches evolve into forward and backward branches. Moreover, their resonance frequencies increase and decrease at four times of the spin speed. The measured results agree well with the predictions found in the authors’ previous theoretical study [1].


Author(s):  
Charles Seeley ◽  
Sunil Patil ◽  
Andy Madden ◽  
Stuart Connell ◽  
Gwenael Hauet ◽  
...  

Abstract Hydroelectric power generation accounts for 7% of the total world electric energy production. Francis turbines are often employed in large-scale hydro projects and represent 60% of the total installed base. Outputs up to 800 MW are available and efficiencies of 95% are common. Cost, performance, and design cycle time are factors that continue to drive new designs as well as retrofits. This motivates the development of more sophisticated analysis tools to better assess runner performance earlier in the design phase. The focus of this paper is to demonstrate high fidelity and time-efficient runner damping and forced response calculations based on one-way fluid-structure interaction (FSI) using loosely coupled commercial finite element analysis (FEA) and computational fluid dynamics (CFD) codes. The runner damping is evaluated based on the work done by the fluid on the runner. The calculation of the work first involves determining the runner mode shapes and natural frequencies using a cyclic symmetric FEA model with structural elements to represent the runner hardware, and acoustic fluid elements to represent the mass loading effect of the fluid. The mode shapes are then used in a transient CFD calculation to determine the damping which represents the work done by the fluid on the runner. Positive damping represents stability from flutter perspective while negative damping represents unstable operating conditions. A transient CFD calculation was performed on a runner to obtain engine order forcing function from upstream stationary vanes. This unsteady forcing function was mapped to the FEA model. Care is taken to account for the proper inter-blade phase angle on the cyclic symmetric model. The hydraulic damping from flutter calculations was also provided as input to the forced response. The forced response is then determined using this equivalent proportional damping and modal superposition of the FEA model that includes both the structural and acoustic elements. Results of the developed analysis procedure are presented based on the Tokke runner, that has been the basis of several studies through the Norwegian HydroPower Center. Unique features of the workflow and modeling approaches are discussed in detail. Benefits and challenges for both the FEA model and the CFD model are discussed. The importance of the hydraulic damping, that is traditionally ignored in previous analysis is discussed as well. No validation data is available for the forced response, so this paper is focused on the methodology for the calculations.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Hyunchul Kim ◽  
I. Y. Shen

This paper is to study ground-based vibration response of a spinning, cyclic, symmetric rotor through a theoretical analysis and an experimental study. The theoretical analysis consists of three steps. The first step is to analyze the vibration characteristics of a stationary, cyclic, symmetric rotor with N identical substructures. For each vibration mode, we identify a phase index n and derive a Fourier expansion of the mode shape in terms of the phase index n. The second step is to predict the rotor-based vibration response of the spinning, cyclic, symmetric rotor based on the Fourier expansion of the mode shapes and the phase indices. The rotor-based formulation includes gyroscopic and centrifugal softening terms. Moreover, rotor-based response of repeated modes and distinct modes is obtained analytically. The third step is to transform the rotor-based response to ground-based response using the Fourier expansion of the stationary mode shapes. The theoretical analysis leads to the following conclusions. First, gyroscopic effects have no significant effects on distinct modes. Second, the presence of gyroscopic and centrifugal softening effects causes the repeated modes to split into two modes with distinct frequencies ω1 and ω2 in the rotor-based coordinates. Third, the transformation to ground-based observers leads to primary and secondary frequency components. In general, the ground-based response presents frequency branches in the Campbell diagram at ω1±kω3 and ω2±kω3, where k is phase index n plus an integer multiple of cyclic symmetry N. When the gyroscopic effect is significantly greater than the centrifugal softening effect, two of the four frequency branches vanish. The remaining frequency branches take the form of either ω1+kω3 and ω2−kω3 or ω1−kω3 and ω2+kω3. To verify these predictions, we also conduct a modal testing on a spinning disk carrying four pairs of brackets evenly spaced in the circumferential direction with ground-based excitations and responses. The disk-bracket system is mounted on a high-speed, air-bearing spindle. An automatic hammer excites the spinning disk-bracket system and a laser Doppler vibrometer measures its vibration response. A spectrum analyzer processes the hammer excitation force and the vibrometer measurements to obtain waterfall plots at various spin speeds. The measured primary and secondary frequency branches from the waterfall plots agree well with those predicted analytically.


2009 ◽  
Vol 16-19 ◽  
pp. 264-268 ◽  
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper introduces the FEA method for cyclic symmetric structures and makes an vibration characteristics analysis to a certain aeroengine compressor blade-disc coupling system based on this method. According to the anslysis results the dynamic characteristics of the blade-disc coupling system are discussed. The analysis method and results in this paper can be used for further study on optimal design and vibration safety verification for the blade-disc coupling system.


Author(s):  
E. P. Petrov

An effective method for analysis of periodic forced response of nonlinear cyclically symmetric structures has been developed. The method allows multiharmonic forced response to be calculated for a whole bladed disc using a periodic sector model without any loss of accuracy in calculations and modelling. A rigorous proof of the validity of the reduction of the whole nonlinear structure to a sector is provided. Types of bladed disc forcing for which the method may be applied are formulated. A multiharmonic formulation and a solution technique for equations of motion have been derived for two cases of description for a linear part of the bladed disc model: (i) using sector finite element matrices; (ii) using sector mode shapes and frequencies. Calculations validating the developed method and a numerical investigation of a realistic high-pressure turbine bladed disc with shrouds have demonstrated the high efficiency of the method.


Sign in / Sign up

Export Citation Format

Share Document