Optimization Design Method of Non-linear Complex System Based on Global Sensitivity Analysis and Dynamic Metamodel

2015 ◽  
Vol 51 (4) ◽  
pp. 126 ◽  
Author(s):  
Yang ZHANG
2005 ◽  
Vol 12 (3) ◽  
pp. 373-379 ◽  
Author(s):  
C. Tiede ◽  
K. Tiampo ◽  
J. Fernández ◽  
C. Gerstenecker

Abstract. A quantitative global sensitivity analysis (SA) is applied to the non-linear inversion of gravity changes and displacement data which measured in an active volcanic area. The common inversion of this data is based on the solution of the generalized Navier equations which couples both types of observation, gravity and displacement, in a homogeneous half space. The sensitivity analysis has been carried out using Sobol's variance-based approach which produces the total sensitivity indices (TSI), so that all interactions between the unknown input parameters are taken into account. Results of the SA show quite different sensitivities for the measured changes as they relate to the unknown parameters for the east, north and height component, as well as the pressure, radial and mass component of an elastic-gravitational source. The TSIs are implemented into the inversion in order to stabilize the computation of the unknown parameters, which showed wide dispersion ranges in earlier optimization approaches. Samples which were computed using a genetic algorithm (GA) optimization are compared to samples in which the results of the global sensitivity analysis are integrated by a reweighting of the cofactor matrix in the objective function. The comparison shows that the implementation of the TSI's can decrease the dispersion rate of unknown input parameters, producing a great improvement the reliable determination of the unknown parameters.


2014 ◽  
Vol 5 (2) ◽  
pp. 901-943 ◽  
Author(s):  
N. Bounceur ◽  
M. Crucifix ◽  
R. D. Wilkinson

Abstract. A global sensitivity analysis is used to describe the response of the Earth Climate Model of Intermediate Complexity LOVECLIM to components of the astronomical forcing (longitude of perihelion, obliquity, and eccentricity) assuming interglacial boundary conditions. Compared to previous studies, the sensitivity is global in the sense that it considers the full range of astronomical forcing that occurred during the Quaternary. We provide a geographical description of the variance due to the different components and their combinations and identify non-linear responses. The methodology relies on the estimation of sensitivity measures, which due to the computational cost of LOVECLIM cannot be obtained directly. Instead, we use a fast surrogate of the climate model, called an emulator, in place of the simulator. A space filling design (a maximin Latin hypercube constrained to span the range of astronomical forcings characterising the Pleistocene) is used to determine a set of experiments to run, which are then used to train a reduced-rank Gaussian process emulator. The simulator outputs considered are the principal modes of the annual mean temperature, precipitation, and the growing degree days, extracted using a principal component analysis. The experiments are run on two distinct land surface schemes to address the effect of vegetation response on climate. Sensitivity to initial conditions is also explicitly assessed. Precession and obliquity are found to contribute equally to growing degree days (GDD) in the Northern Hemisphere, and the effects of obliquity on the response of Southern Hemisphere temperature dominate precession effects. Further, compared to the original land-surface scheme with fixed vegetation, the LOVECLIM interactive vegetation induces non-linear responses in the Sahel-Sahara and Arctic sea-ice area. Finally, we find that there is no synergy between obliquity and precession.


Author(s):  
Lu Xia ◽  
Meihua Yang ◽  
Lang Li ◽  
Xin Zhang

To deal with the problem of the difficult optimization search and expensive computational cost caused by large-scale design variables, the hierarchical optimization design system based on the global sensitivity analysis method is established in this paper. The M-OAT method is used to analyze the global sensitivity of the design variables, according to the sensitivity information to layer design variables, then optimize the design variables in each hierarchy. Through the study of the hierarchical optimization design of airfoils and wings, compared with the normal parameter optimization design system, the hierarchical optimization design system based on the global sensitivity analysis method can reduce effectively the number of design variables in a single optimization, reduce the difficulty of the optimization search, improve the convergence speed of the optimization, gain better optimization results at the same time. For optimization design with large-scale design variables, the hierarchical optimization design system based on the global sensitivity analysis method is a sort of effective ways of design.


Sign in / Sign up

Export Citation Format

Share Document