Design of Rotor Cage with Arc-blade for the Turbo Air Classifier

2016 ◽  
Vol 52 (2) ◽  
pp. 195
Author(s):  
Wenjing REN
Keyword(s):  
Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 237 ◽  
Author(s):  
Yun Zeng ◽  
Si Zhang ◽  
Yang Zhou ◽  
Meiqiu Li

Due to the rapid development of powder technology around the world, powder materials are being widely used in various fields, including metallurgy, the chemical industry, and petroleum. The turbo air classifier, as a powder production equipment, is one of the most important mechanical facilities in the industry today. In order to investigate the production efficiency of ultrafine powder and improve the classification performance in a turbo air classifier, two process parameters were optimized by analyzing the influence of the rotor cage speed and air velocity on the flow field. Numerical simulations using the ANSYS-Fluent Software, as well as material classification experiments, were implemented to verify the optimal process parameters. The simulation results provide many optimal process parameters. Several sets of the optimal process parameters were selected, and the product particle size distribution was used as the inspection index to conduct a material grading experiment. The experimental results demonstrate that the process parameters of the turbo air classifier with better classification efficiency for the products of barite and iron-ore powder were an 1800 rpm rotor cage speed and 8 m/s air inlet velocity. This research study provides theoretical guidance and engineering application value for air classifiers.


2021 ◽  
Vol 52 (7) ◽  
pp. 772-780
Author(s):  
Y. Yu ◽  
X. Kong ◽  
C. Ren ◽  
J. Liu ◽  
J. Liu
Keyword(s):  

2008 ◽  
Vol 58 ◽  
pp. 59-67 ◽  
Author(s):  
Qing Liang Yang ◽  
Jia Xiang Liu ◽  
Yun Bo Zhou

The turbo air classifier is one of the most widely used equipment in powder classification. The complex flow behaviour inside it, however, prevents material experiments from providing information about its internal separation mechanisms. A study of the interaction of structural variables is therefore undertaken examining air flow behaviour, specifically the air flow between the blades of the rotor cage. The investigation of these flow field characteristics made use of the computational fluid dynamics (CFD) to simulate the air flow in the classifier. It was found that the inlet velocity of the turbo air classifier and the rotary speed of the rotor cage are two of the dominating, non-structural factors that affect velocity distributions in the region between the rotor cage blades. Once the inlet velocity settles, a critical rotary speed must be present to smoothen the flow field between the blades, resulting in an excellent classification performance. Three-dimensional velocity measurements of the region between the blades by laser Doppler velocimeter (LDV) were performed to test the results of the flow field simulation. This revealed that when inlet velocity is invariable, the velocity distributions in the region between the blades are at its most symmetric with the critical rotary speed of the rotor cage making it more favourable for classification. The velocity measurement results are likewise in good agreement with the results of the flow field simulation. Newly structured rotor cages are also simulated and compared with a conventional turbo air classifier, air flow in the newly structured model is smoother. The distributions of radial and tangential velocities are more symmetric and the trend of the rotating vortex between the blades attenuates, particularly when the rotary speed is high. The newly structured rotor cages can therefore achieve higher classification performances.


2012 ◽  
Vol 44 ◽  
pp. 96-106 ◽  
Author(s):  
Pasi Karinkanta ◽  
Mirja Illikainen ◽  
Jouko Niinimäki

Author(s):  
Sang Bin Lee ◽  
Jaehoon Shin ◽  
Yonghyun Park ◽  
Heonyoung Kim ◽  
Jongwan Kim
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document