Experimental investigation of energy efficiency of an air classifier mill pulverizing a raw material of aquafeed

Author(s):  
Fei Xue ◽  
Fei Gao
2021 ◽  
Vol 2091 (1) ◽  
pp. 012011
Author(s):  
P A Nikitin ◽  
A K Nikitin

Abstract The paper presents results of experimental investigation of an acousto-optic modulator of terahertz radiation based on liquefied sulfur hexafluoride. It was found that the intensity of diffracted radiation at a fixed ultrasound power depends on the dimensions of the ultrasound transducer. The optimal size of the ultrasound transducer in the direction orthogonal to the plane of the acousto-optic interaction was determined, at which the maximum energy efficiency of the acousto-optic modulator was achieved.


1994 ◽  
Vol 59 (4) ◽  
pp. 680-694 ◽  
Author(s):  
Tammy Stone

Current models of ground-stone design, which relate tool morphology and size to subsistence economies, are based on assumptions of energy efficiency and processing constraints of the foodstuffs being ground. These models do not consider the impact of raw-material scarcity on ground-stone technologies. This impact is investigated here using an assemblage from the Classic-period Hohokam site of Pueblo Grande, Arizona. The current model of ground-stone design is modified to account for raw-material scarcity. Specifically, it is demonstrated that raw-material scarcity affects ground-stone manufacture, use, and discard patterns. It is argued here that studies using ground-stone assemblages to reconstruct subsistence economies must take these factors into consideration in areas where raw-material scarcity occurs.


2020 ◽  
Vol 264 (4) ◽  
pp. 2-9
Author(s):  
Oleksiy Klimenko ◽  

Suggestions for the development of theoretical and methodological foundations of system management of energy efficiency and environmental pollution by road transport in the life cycle are given. It takes into account all essential areas covering transportation, infrastructure, maintenance, also energy, chemical and automotive industries, raw material extraction, utilization, and related processes of energy consumption and environmental pollution, distributed in space and time. A universal structural scheme of the “supersystem” is proposed, which reflects the processes of consumption of energy, material and other resources, distributed environmental pollution through the functioning of road transport and related industries, and linked damage as well. The target function of the “supersystem” can be represented as the fulfilment during a certain period (covering the life cycle of the main elements – objects of influence (regulation) and investment of financial resources) of the specified volumes of certain types of transport work with the minimum possible and economically justified consumption of energy, consumables, materials, other resources (including those consumed by the transportation, infrastructure, maintenance, also energy, chemical and automotive industries, raw material extraction, utilization), the minimum possible losses due to artificial pressure on the recipients (human beings, fauna and flora, buildings, etc.) of directly the transport system and infrastructure, as well as side effects of processes in other elements of the “supersystem”, that may be reduced to the total cost of transport, taking into account the inflation index of monetary units. It is proposed to carry out a mathematical description of complicated sets, dynamically distributed in the space of objects that change the structure and properties over time, based on the further development of such a tool as the theory of multisets. In a simplified form, it is presented an example of a fragment of the management system based on measures to regulate the first access of vehicles to the market, further operation, and to certain elements of infrastructure, with the introduction of low emission zones in cities. The development, creation and effective functioning of the management system of transport and related sectors of the economy in those mentioned above and other parts, requires a coherent system approach based on forecasting (modelling) the consequences of decisions, which can be implemented using the tools described in this article. Keywords: wheeled vehicles, road transport, systems management, energy efficiency, environmental pollution.


2018 ◽  
Vol 45 ◽  
pp. 155-162 ◽  
Author(s):  
Priyanka Jajal ◽  
Trupti Mishra

Abstract. Climate change is a growing concern that is attracting international efforts. India, as a developing country, has committed to reducing its emission intensity of GDP up to 30 %–35 % by 2030. The emission intense sectors would be targeted to achieve climate commitment. One of the emission intense sector is construction raw material manufacturing that contributes 10 % share in the total emissions making it one of the potential mitigation sector. The study examines emissions from the construction raw materials namely, cement, steel, and brick manufacturing and presents two emission scenarios up to 2050. Energy efficient scenario (S2) is compared with a reference scenario (S1) developed based on a bottom-up approach. The results indicate that a moderate energy efficiency improvements and technological shifts lead to a decrease in emissions of 72 MT CO2 by 2030 and 137 MT CO2 by 2050. Further, the steel industry has the highest reduction potential, as the current technologies are energy inefficient. Similarly, the current dependency on fired bricks may be shifted to cement setting blocks leading to emission reductions. Cement manufacturing, on the other hand, shows limited scope for emission reduction that may be achieved through energy efficiency improvements. Efforts towards energy efficiency improvements in construction raw material manufacturing would result in reductions beyond the existing commitment of the Paris Agreement for India by 2030.


2022 ◽  
Author(s):  
Giuseppe Battaglia ◽  
Salvatore Romano ◽  
Antonello Raponi ◽  
Daniele Marchisio ◽  
Michele Ciofalo ◽  
...  

Magnesium is a raw material of great importance, which attracted increasing interest in the last years. A promising route is to recover magnesium in the form of Magnesium Hydroxide via precipitation from highly concentrated Mg2+ resources, e.g. industrial or natural brines and bitterns. Several production methods and characterization procedures have been presented in the literature reporting a broad variety of Mg(OH)2 particle sizes. In the present work, a detailed experimental investigation is aiming to shed light on the characteristics of produced Mg(OH)2 particles and their dependence upon the reacting conditions. To this purpose, two T-shaped mixers were employed to tune and control the degree of homogenization of reactants. Particles were analysed by laser static light scattering with and without an anti-agglomerant treatment based on ultrasounds and addition of a dispersant. Zeta potential measurements were also carried out to further assess Mg(OH)2 suspension stability.


Author(s):  
Е. Sigarev ◽  
Y. Lobanov ◽  
А. Pohvalitiy

The results of calculation of energy efficiency of the variant of technology of converter smelting with preliminary heating of scrap metal in the unit due to burning of solid fuels in modern raw material conditions of the metallurgical enterprise of Ukraine are presented. A critical analysis of the variant of converter smelting technology with the use of preheating of an increased amount of scrap metal in the charge containing briquettes of steel chips in the unit, before pouring processing iron. According to the results of the calculation of the efficiency of use of different types of fuel used for preheating of scrap metal in the unit, the rational type and technology of its use in converter smelting are determined. A direct connection between the chemical composition of briquettes, the level of their preheating and the share in the metal charge on the energy efficiency of the converter process and their chemical heat content has been established. The nature of the temperature distribution in the volume of briquettes from steel shavings, which are a part of the metal charge, is taken into account when they are preheated by oxidation of coal with oxygen supplied through the nozzles of the standard lance. A method for calculating the change in energy consumption of scrap metal during its preheating, taking into account the content of elements in the briquettes and the level of heating. The energy consumption of the converter process with preheating of the metal charge increases in proportion to the level of contamination of briquettes from steel chips with non-metallic inclusions. According to the calculations when heating briquettes by 100—800 degrees in the converter, the increase in energy consumption of the converter process is from 60 to 630 MJ / t and from 445 to 1000 MJ/t for contamination of briquettes with non-metallic inclusions of 2.47 and 7.87 % by weight in accordance. With the reduction of briquette contamination, the efficiency of preheating of the metal charge increases. The share of the impact of the level of briquette contamination on the overall energy efficiency of the converter process is on average 0.3 % of the total energy savings of 1.91—1.92 GJ / t, which is achieved by increasing the share of scrap metal in the charge.


2022 ◽  
Author(s):  
Mohammed El Hadi Attia ◽  
Mohamed Zayed ◽  
Mohamed Abdelgaied ◽  
Swellam Sharshir ◽  
Abd Elnaby Kabeel

Abstract The low energy efficiency of the solar distillers is one of the most key barriers to their effectual usage in the desalination domain. In this work, an experimental investigation was conducted to enhance the freshwater productivity of the hemispherical solar distiller. This was achieved by utilizing flat and v-corrugated iron trays configurations on the bottom of the distiller basin in order to increase the vaporization surface area for better heat transfer of saline water. Three distillers were designed and examined; namely, conventional hemispherical solar distiller (CHSD), hemispherical solar distiller with flat iron trays (HSD-FIT), and hemispherical solar distiller with v-corrugated iron trays (HSD-VIT). Moreover, the effects of using wick materials (WM) in the basin of HSD-FIT and HSD-VIT have been also investigated and compared to that of CHSD. A comparative thermo-economic analysis of HSD-VITWM, HSD-FITWM, HSD-VIT, HSD-FIT, and CHSD has been conducted to determine the better modification that maximizes the performance of hemispherical stills. Experiments were carried out at the desert climate conditions of El-Oued (33°27′N, 7°11′E), Algeria. The results showed that all modifications revealed good thermo-economic performance enhancements and the HSD-VITWM achieved the maximal improvement from both freshwater production and energo-economic performance. The freshwater productivity and energy efficiency of the HSD-VITWM were improved by 83.12 and 81.67%, respectively, relative to CHSD. Additionally, the cost of freshwater production was lowered by 41.72%.


Sign in / Sign up

Export Citation Format

Share Document