Repetitive Learning Control for Class of Unidirectional Control Input Systems with Unknown Nonlinear Dynamics

2017 ◽  
Vol 53 (22) ◽  
pp. 109
Author(s):  
Yougang SUN
2021 ◽  
Author(s):  
Michael Meindl ◽  
Dustin Lehmann ◽  
Thomas Seel

<div>This work addresses the problem of reference tracking in autonomously learning agents with unknown, nonlinear dynamics. Existing solutions require model information or extensive parameter tuning, and have rarely been validated in real-world experiments. We propose a learning control scheme that learns to approximate the unknown dynamics by a Gaussian Process (GP), which is used to optimize and apply a feedforward control input on each trial. Unlike existing approaches, the proposed method neither requires knowledge of the system states and their dynamics nor knowledge of an effective feedback control structure. All algorithm parameters are chosen automatically, i.e. the learning method works plug and play. The proposed method is validated in extensive simulations and real-world experiments. In contrast to most existing work, we study learning dynamics for more than one motion task as well as the robustness of performance across a large range of learning parameters. The method’s plug and play applicability is demonstrated by experiments with a balancing robot, in which the proposed method rapidly learns to track the desired output. Due to its model-agnostic and plug and play properties, the proposed method is expected to have high potential for application to a large class of reference tracking problems in systems with unknown, nonlinear dynamics.</div>


2021 ◽  
Author(s):  
Michael Meindl ◽  
Dustin Lehmann ◽  
Thomas Seel

<div>This work addresses the problem of reference tracking in autonomously learning agents with unknown, nonlinear dynamics. Existing solutions require model information or extensive parameter tuning, and have rarely been validated in real-world experiments. We propose a learning control scheme that learns to approximate the unknown dynamics by a Gaussian Process (GP), which is used to optimize and apply a feedforward control input on each trial. Unlike existing approaches, the proposed method neither requires knowledge of the system states and their dynamics nor knowledge of an effective feedback control structure. All algorithm parameters are chosen automatically, i.e. the learning method works plug and play. The proposed method is validated in extensive simulations and real-world experiments. In contrast to most existing work, we study learning dynamics for more than one motion task as well as the robustness of performance across a large range of learning parameters. The method’s plug and play applicability is demonstrated by experiments with a balancing robot, in which the proposed method rapidly learns to track the desired output. Due to its model-agnostic and plug and play properties, the proposed method is expected to have high potential for application to a large class of reference tracking problems in systems with unknown, nonlinear dynamics.</div>


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xuejing Lan ◽  
Zhenghao Wu ◽  
Wenbiao Xu ◽  
Guiyun Liu

This paper considers the region-based formation control for a swarm of robots with unknown nonlinear dynamics and disturbances. An adaptive neural network is designed to approximate the unknown nonlinear dynamics, and the desired formation shape is achieved by designing appropriate potential functions. Moreover, the collision avoidance, velocity consensus, and region tracking are all considered in the controller. The stability of the multirobot system has been demonstrated based on the Lyapunov theorem. Finally, three numerical simulations show the effectiveness of the proposed formation control scheme to deal with the narrow space, loss of robots, and formation merging problems.


Sign in / Sign up

Export Citation Format

Share Document