scholarly journals Geochemistry, risk assessment, and Pb isotopic evidence for sources of heavy metals in stream sediments around the Ulukışla Basin, Niğde, southern Turkey

2020 ◽  
Vol 29 (7) ◽  
pp. 1167-1188 ◽  
Author(s):  
Abdurrahman LERMİ ◽  
Emmanuel Daanoba SUNKARI

Concentrations of selected elements (Al, Fe, Mn, Mo, As, Cd, Cu, Cr, Ni, Co, Pb, Sb, and Zn) and Pb isotope ratios were determined in 53 sediments from Alihoca, Gümüş, Horoz, and Çakıt streams around the south-central Taurides (Ulukışla Basin), Niğde, which is a known mining province in Turkey. Several pollution and risk assessment indices were used to assess possible heavy metal pollution in the stream sediments and the associated potential ecological risks. Concentrations of As, Cd, Cu, Cr, Ni, Co, Pb, Sb, and Zn were elevated in the streams located near ancient mines, active mines, and slag piles in the area, suggesting an influence from mining activities. The pollution assessment indices indicated that the sediments were significantly polluted by As, Cd, Sb, Zn, and Pb and moderately polluted by Cu, Ni, Cr, and Co. The sediments show very high potential ecological risk with As, Cd, Sb, and Pb as the principal contributors. Ni, Cr, As, Pb, Zn, and Cd exceeded the probable effect concentrations in most of the samples implying that their concentrations may frequently affect sediment-dwelling organisms. Multivariate statistical analyses indicate that the accumulation of heavy metals in the stream sediments is due to an interplay of anthropogenic activities (mining and agrochemical application) and geogenic processes (weathering of bedrocks and supergene alteration of base metal-rich mineralization). Pb isotopic tracing indicates that total Pb in the sediments (206Pb/207Pb = 1.09–1.29) is primarily from weathering and dissolution of ultrapotassic rocks (206Pb/207Pb up to 1.20) and galena (206Pb/207Pb up to 1.21) from the Pb-Zn-Au deposits in the area with some anthropogenic input from mine slag piles (206Pb/207Pb = 1.10).

Author(s):  
Songtao Wang ◽  
Zongjun Gao ◽  
Yuqi Zhang ◽  
Hairui Zhang ◽  
Zhen Wu ◽  
...  

This study investigated the characteristics and sources of heavy metals in a soil–ginger system and assessed their health risks. To this end, 321 topsoil samples and eight soil samples from a soil profile, and 18 ginger samples with root–soil were collected from a ginger-planting area in the Jing River Basin. The average concentration of heavy metals in the topsoil followed the order: Cr > Zn > Pb > Ni > Cu > As > Cd > Hg. In the soil profile, at depths greater than 80 cm, the contents of Cr, Ni, and Zn tended to increase with depth, which may be related to the parent materials, whereas As and Cu contents showed little change. In contrast, Pb content decreased sharply from top to bottom, which may be attributable to external environmental and anthropogenic factors. Multivariate statistical analysis showed that Cr, Ni, Cu, Zn, and Cd contents in soil are affected by natural sources, Pb and As contents are significantly affected by human activities, and Hg content is affected by farmland irrigation. Combined results of the single pollution index (Pi), geo-accumulation index (Igeo), and potential ecological risk assessment (Ei and RI) suggest that soil in the study area is generally not polluted by heavy metals. In ginger, Zn content was the highest (2.36 mg/kg) and Hg content was the lowest (0.0015 mg/kg). Based on the bioconcentration factor, Cd and Zn have high potential for enrichment in ginger. With reference to the limit of heavy metals in tubers, Cr content in ginger exceeds the standard in the study area. Although Cr does not accumulate in ginger, Cr enrichment in soil significantly increases the risk of excessive Cr content in ginger.


2020 ◽  
Vol 20 (2) ◽  
pp. 77-85
Author(s):  
S. A. Ndur ◽  
S. Y. Nyarko ◽  
I. Quaicoe ◽  
L. B. Osei

Sediment contamination by heavy metals resulting from anthropogenic activities is increasingly becoming a global concern due to the risk it poses to human well-being and ecological integrity at large. The purpose of this study was to assess the heavy metals loading in sediment along the Kawere stream. Ten sediment samples were collected, acid digested and analysed for copper (Cu), lead (Pb), cadmium (Cd), manganese (Mn), zinc (Zn), nickel (Ni), chromium (Cr), cobalt (Co) and iron (Fe) using a Varian AA240FS Atomic Absorption Spectrometer (AAS). The Australian and New Zealand Environment and Conservation Council (ANZECC) guidelines for freshwater sediment quality was used as the benchmark against which the measured metal concentrations were compared. Nemerow’s pollution and potential ecological risk indices were used to evaluate the pollution status and ecological risk levels of the heavy metals in the stream. The results obtained indicated that, except Cu which exceeded the ANZECC trigger value of 65 mg/kg at three sampling sites (K01=171.29 mg/kg, K05=170.83 mg/kg and K07=113.31 mg/kg), all other measured heavy metals concentrations were below their corresponding ANZECC values. Heavy metal pollution assessment showed that three samples (K01, K05 and K07) were slightly polluted, suggesting the likelihood of posing a health threat to the aquatic organisms and humans. Calculated Ecological Risk Index (RI) ranged from 3.229 to 19.750 (RI < 150), representing a low ecological risk. As such, the metals, Cu, Ni, Cd, Pb, Cr, and Zn pose a low ecological risk to the aquatic ecosystem. Although the ecological risk is low based on the current results, constant monitoring of the stream quality is recommended due to the increasing human activities along the stream as well as the sediments ability to accumulate and remobilise heavy metals back into the water column and possibly transferring them through the food chain.   Keywords: Heavy Metals, Sediment, Ecological Risk Assessment, Pollution, Stream


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 614
Author(s):  
Muhammad Faisal ◽  
Zening Wu ◽  
Huiliang Wang ◽  
Zafar Hussain ◽  
Chenyang Shen

Heavy metals in road dust pose a significant threat to human health. This study investigated the concentrations, patterns, and sources of eight hazardous heavy metals (Cr, Ni, Cu, Zn, As, Cd, Pb, and Hg) in the street dust of Zhengzhou city of PR China. Fifty-eight samples of road dust were analyzed based on three methods of risk assessment, i.e., Geo-Accumulation Index (Igeo), Potential Ecological Risk Assessment (RI), and Nemerow Synthetic Pollution Index (PIN). The results exhibited higher concentrations of Hg and Cd 14 and 7 times higher than their background values, respectively. Igeo showed the risks of contamination in a range of unpolluted (Cr, Ni) to strongly polluted (Hg and Cd) categories. RI came up with the contamination ranges from low (Cr, Ni, Cu, Zn, As, and Pb) to extreme (Cd and Hg) risk of contamination. The risk of contamination based on PIN was from safe (Cu, As, and Pb) to seriously high (Cd and Hg). The results yielded by PIN indicated the extreme risk of Cd and Hg in the city. Positive Matrix Factorization was used to identify the sources of contamination. Factor 1 (vehicular exhaust), Factor 2 (coal combustion), Factor 3 (metal industry), and Factor 4 (anthropogenic activities), respectively, contributed 14.63%, 35.34%, 36.14%, and 13.87% of total heavy metal pollution. Metal’s presence in the dust is a direct health risk for humans and warrants immediate and effective pollution control and prevention measures in the city.


2021 ◽  
Author(s):  
Shirin Akter ◽  
Mohammad Obidur Rahman ◽  
Mehedi Hasan ◽  
Saiful Islam Tushar ◽  
Mottalib Hossain Sarkar ◽  
...  

Abstract The mean concentrations of heavy metals viz: K, Ca, Mg, Ti, Fe, Co, Cu, As, Zn, Rb, Sr, Zr, Pb and Th were measured in soil samples using Energy Dispersive X-ray Fluorescence (EDXRF) technique and sampling sites as a whole were found highly contaminated by Zn, considerably contaminated by Mg and Pb, while moderately contaminated by Fe, Co, Cu, Rb, Sr, As, Rb, Y, Th. The sampling sites are moderate to strongly polluted by heavy metals according to Enrichment factors value, whereas, Pollution Load Index values for 95% of the sample sites were ≥ 1.5, indicating deterioration of soil quality. Potential Ecological risk (RI) value followed the increasing sequence of Pb > As > Co > Zn > Cu. Non-carcinogenic exposure found higher in children compared to adults,however carcinogenic risk assessment revealed that both groups (adult and children) lied within Grade II category (10− 5 to 10− 6) and considered to be at no risk.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


2012 ◽  
Vol 610-613 ◽  
pp. 3067-3074
Author(s):  
Kun Shi ◽  
Dong Sheng Li ◽  
Bi Yun Zhao

1144 sample points were collected using PXRF from an area of 99 square kilometers soil area Zhehai town Huizhe county of Yunnan province to acquire their concentrations and possible sources, and characterize their spatial variability for risk assessment. SPSS16.0 was used to deal the raw date and eliminate the outfits and perform Multivariate analysis (correlation matrix, principal component analysis, and cluster analysis). It discriminate distinct groups of heavy metals. From the Range of the semi-variorum models, it obtained elements spatial structure and the contamination resource caused mainly by natural resource or anthropogenic activities. The result of risk assessment attained the percentage of pollution accounts for whole investigate region, which provides the reference to deal with the soil pollution.


Sign in / Sign up

Export Citation Format

Share Document