pollution load index
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 131)

H-INDEX

9
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Jahidul Hassan ◽  
Md. Mijanur Rahman Rajib ◽  
Masuma Akter ◽  
Md.Noor E Azam Khan ◽  
Shahjalal Khandakar ◽  
...  

Abstract This experiment considers the seven different stages of textile dyeing effluents on tomato crop production in order to diminish the excess effluent treatment plant (ETP) cost and farmers net input cost. Seven different stages waste water (WW) with ground water (control) were collected and analyzed for physiochemical as well as heavy metals properties. T8 (mixed effluent) crossed the limit of agricultural standard for almost all physiological parameters such as TDS, TSS, EC, BOD, COD affording the highest value. T8 also delivered the highest cl- and heavy metals like Cd, Ni, Cr followed by T4 (2nd wash after bath drain) < T7 (Fixing treatment water). As a consequence, these provided comparatively higher enrichment factor (EF), pollution load index (PLI) and sodium absorption ratio (SAR) to transform fresh soil into “severe” and “slightly to moderate” saline. Correlation matrix demonstrated that EF and PLI of heavy metals (except Cd, Ni) were negatively related to yield, while positively related to SAR and fruit abortion. Although T6 (2nd wash after soaping) performed better in respect to growth, yield, yield attributes and nutrient use efficiency, principal component analysis (PCA) expressed that T2 (2nd wash after scouring and bleaching) and T3 (enzyme treated water) also belong to T6 and T1 group (ground water). Therefore, T2, T3 and T6 could be used to vegetable crop production up to some extent and to reduce ETP and agricultural input cost.


2021 ◽  
Vol 40 ◽  
Author(s):  
Jing Lin ◽  
A.B.M. Sadique Rayhan ◽  
Yun Wang ◽  
Zhai Wu ◽  
Yan Lin ◽  
...  

Concentrations of heavy metals (Cu, Pb, Zn, Cd and Cr) in surface soils and sediments collected in 2008 from 37 sampling sites in the Fildes Peninsula and Ardley Island were detected by atomic absorption spectrometry. The total contents of Cu, Pb, Zn, Cd and Cr ranged, respectively, from 61.36 to 562.2 mg/kg, 0.52 to 1.95 mg/kg, 54.61 to 577.9 mg/kg, 0.04 to 3.76 mg/kg and 6.83 to 25.9 mg/kg in soils and from 58.55 to 498.3 mg/kg, 0.60 to 2.51 mg/kg, 56.22 to 345.9 mg/kg, 0.07 to 5.77 mg/kg and 7.76 to 39.5 mg/kg in sediments. The geo-accumulation index and the pollution load index were calculated to evaluate the environmental effects of heavy metal pollutants, Cu, Zn and Cd, in the study area. Soils and sediments from Ardley Island were found to be moderately polluted with the studied metals. Pearson’s correlation analysis and principal component analysis were applied to assess the distribution pattern and potential source of heavy metals. The results suggest that Cu, Zn and Cd in the study area originated from both the lithogenic sources and penguin guano, while Pb and Cr were probably derived from lithogenic sources.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
William Azuka Iyama ◽  
Kingsley Okpara ◽  
Kuaanan Techato

This study assessed the concentration of heavy metal, such as lead (Pb), cadmium (Cd), Chromium (Cr), iron (Fe), Nickel (Ni), and Silver (Ag), in Vernonia amygdalina Delile and agricultural soils of three university farms located in Port Harcourt, Nigeria. The soils and plants were taken randomly to form composite samples and analyzed for heavy metals by the use of atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF). The study stations were agricultural soils and Vernonia amygdalina Delile from the Ignatius Ajuru University of Education (I), River State University (R) and University of Port Harcourt (U). The soil samples recorded mean concentration ranges for Fe as 19.71 ± 1.77 (I)–27.24 ± 3.56 mg/kg (R) in soils and 12.95 ± 1.68 (R)–18.18 ± 2.02 mg/kg (U) for the bitter leaf samples. The mean range for Pb concentration in the soil and bitter leaf were 4.35 ± 0.87–6.80 ± 0.86 mg/kg and 0.24 ± 0.64–2.19 ± 0.74 mg/kg, while Cd concentration in the soil and bitter leaf were 0.46 ± 0.28–1.42 ± 0.40 mg/kg and 0.17 ± 0.22–0.42 ± 0.08 mg/kg, respectively. The respective mean ranges for Cr concentration in the soil and bitter leaf were 5.91 ± 1.14–8.77 ± 0.88 mg/kg and 4.04 ± 0.64–5.92 ± 0.69 mg/kg, while Ni in soil and bitter leaf were 0.54 ± 3.38–10.26 ± 3.50 mg/kg and 0.042 ± 1.42–3.30 ± 0.88 mg/kg, while Ag was negligible. Heavy metal levels in soils and Vernonia amygdalina followed the order Fe > Cr > Pb > Ni > Cd and Fe > Cr > Ni > Pb > Cd, respectively, and were lower than WHO/FAO and EPA, except Cd, which was higher in soil and in Vernonia amygdalina. The ecological risk factor (ErF) was comparatively lower in soils than in the plant, while pollution load index (PLI) showed high heavy metal retention capacities in Vernonia amygdalina due to more anthropogenic influences. The metal transfer factor (TF) was highest in Fe, followed by Cr > Cd > Ni > Pb, while Pb had the highest chances of cancer risks from the incremental lifetime cancer risk (ILCR), especially in both soil and plant (mean ILCR, 2.07 × 10−2 and 2.45 × 10−3), while Cd had the least (mean ILCR, 9.64 × 10−5 and 3.36 × 10−5). Anthropogenic activities must be regulated and monitored by government relevant agencies to reduce heavy metal inputs into soils and avoid excessive accruals in food chain.


Author(s):  
A. Benarabi ◽  
M. S. Nili ◽  
A. Douadi

Soil is contaminated with various potentially harmful metals (PTMs). Therefore, the adequate protection of soil from contamination is imperative, as the soil is regarded as the primary cradle for living and environmental balance. Accordingly, the purpose of this study was to assess the contamination level by PTMs in Touggourt city, where soil samples have been collected randomly from 18 sites. These sites included manufacturing companies and institutions belonging to the industrial region of Touggourt city. The concentrations of six PTMs - zinc (Zn), iron (Fe), cobalt (Co), copper (Cu), lead (Pb) and manganese (Mn) were assessed using the atomic absorption spectrophotometer (AAS) instrument as well as the application of the modern pollution indices such as CF (Contamination Factor), PLI (Pollution Load Index) and EF (Enrichment Factor). The highest values of contamination factor (CF) for Zn, Fe, Co, Cu, and Pb were 0.605, 1.605, 0.277, 0.05, 0.438, and 0.01, respectively, and the highest value of pollution load index (PLI) was 0.139, while the results of enrichment factor (EF) for the Zn, Mn, Co, Cu and Pb metals were 2.608, 0.060, 0.740, 0.122, and 2.358, respectively. According to these pollution indices, the results of this study have indicated that human effects or industrial wastes and traffic, in particular, were the sources of heavy metal contaminating the studied region.


2021 ◽  
Vol 22 (2) ◽  
pp. 358-366
Author(s):  
Aziz Ur Rahman ◽  
Haq Nawaz Abbasi ◽  
Muhammad Owais

Freshwater consumption has been increased because of population growth and economic development. At the same time, depletion and contamination of groundwater is subject of great concern. Karachi is the industrial hub and serves as the economic backbone of Pakistan. The research aims to investigate the heavy metal pollution in the groundwater of Korangi Industrial Area, one of the largest industrial estates in Karachi. Eighteen representative locations were selected to collect groundwater samples and study the concentrations of heavy metals Cr, Fe, Ni, Cu, Zn, and Pb. Pollution load index, Nemerow's pollution index, and geo accumulation index approaches were used to interpret the basic data. The average concentrations of the measured heavy metals were 354.67 µg.L-1 , 694.33 µg.L-1 , 39.2 µg.L-1 , 12.89 µg.L-1 , 9.5 µg.L-1 , and 6.17 µg.L-1 for Fe, Zn, Cu, Pb, Cr, and Ni, respectively. The results showed that groundwater quality in the study area is poor and mainly contaminated by Pb and Fe.


2021 ◽  
Vol 13 (24) ◽  
pp. 13739
Author(s):  
Zafar Iqbal Khan ◽  
Asim Mansha ◽  
Muhammad Hamzah Saleem ◽  
Farah Tariq ◽  
Kafeel Ahmad ◽  
...  

Due to the rapid increase in industrial and urban areas, environmental pollution is increasing worldwide, causing unwanted changes in the air, water, and soil at biological, physical, and chemical levels, ultimately causing negative effects for living things. This work was performed in Jhang, Punjab, Pakistan, and examined and measured heavy metal levels in various plant parts of the rice (Oryza sativa) variety Kainat (roots, shoots, and grains) with results been set in relation to the soil around the root area. The samples were taken from five different sites. The mean level of trace metals (mg/kg) in grains was soil-dependent and varied from cadmium (Cd) (2.49–5.52), zinc (Zn) (5.8–10.78), copper (Cu) (4.82–7.85), cobalt (Co) (1.48–6.52), iron (Fe) (8.68–14.73), manganese (Mn) (6.87–13.93), and nickel (Ni) (2.3–8.34). Excluding Cd, the absorption of all metals under inspection was recorded within permissible limits, as recommended by the FAO and WHO. The pollution load index for Cd was highest at all sites. The enrichment coefficient of Co, Cd, and Cu were greater. The bioaccumulation factor at all studied sites was present, in order: Cu ˃ Zn ˃ Fe ˃ Mn ˃ Co ˃ Ni ˃ Cd. The translocation factor was present at five different sites: Mn ˃ Fe ˃ Cu ˃ Zn ˃ Co ˃ Cd ˃ Ni. The health risk index of all inspected metals was lower than 1 and was within safe limits. The higher pollution of Cd suggested maintenance of rice crop is recommended, decreasing health risks in humans.


2021 ◽  
Vol 9 (11) ◽  
pp. 946-953
Author(s):  
Mamoudou Sall ◽  
◽  
Prince Momar Gueye ◽  
Abdou Ciss Wade ◽  
Alassane Traore ◽  
...  

Solid wastes and their by-products are gaining interest worldwide given their high environmental impact. Fly ash and Bottom ash from Camberene sludge waste center (Senegal) were characterized to assess the heavy metal contamination (using XRF and the Toxicological Risk) that is very important in type 1 unlike in type 2. The Index of geo-accumulation (Igeo), the Pollution load index (PLI), the Enrichment factor (EF) and Contamination factor (CF) have been computed to evaluate the contamination rate. These show that the fly ash has aIgeo value of 3.57 for Pb and 3.04 for As which means they are very polluted. For Cu we have an Igeo value of 4.23 and for Zn it is 4.67 so these ashes are strongly to extremely polluted by Cu and Zn but unpolluted to moderately polluted by Cr. For the bottom ashes we have Igeo values of 3.03 for Cu and 3.02 for Zn, to say they are also strongly polluted. However, they are not polluted by Cr and are only moderately polluted by Pb and As results confirmed by the EF calculation. Fine and dirty ashes have significantly been enriched by the metal As with an EF of 13.71 while for Pb its EF is 19.10 for the fine ash. As for the bottom ash we have respectively 7.26 and 5.19 for the EF of As and Pb. From the values of PLI these ashes are very highly polluted. Their possible dangerousness depends essentially on their heavy metal contents (criterion H14 of Directive 91 / 689 / EEC). In this Directive the material is toxic if its content in heavy metal is higher to some thresholds (see Annex III, Table 6). Most of their heavy metal contents are below the threshold in Annex III, indicating their harmlessness. This analysis highlighted the principal characteristics to be taken into account before using the SSA properly.


Author(s):  
Weili Wang ◽  
Cai Lin ◽  
Lingqing Wang ◽  
Ronggen Jiang ◽  
Yang Liu ◽  
...  

Potentially toxic elements (PTEs) have attracted substantial attention because of their widespread sources, long residue time and easy accumulation. PTEs in the surface sediments of inshore waters are strongly affected by human activities because these waters are a zone of interaction between the ocean and land. In the present study, to explore the environmental geochemical behaviour and source of PTEs in the surface sediments of coastal waters, the contents and spatial distributions of copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), chromium (Cr), mercury (Hg) and arsenic (As) in different regions of Xiamen Bay were investigated. The data were processed by multivariate statistical methods, and the distribution characteristics of PTEs in the surface sediments of Xiamen Bay were analysed. In addition, the pollution load index (PLI), geo-accumulation index (Igeo) and potential ecological index(RI) were used to evaluate the pollution degree and potential risk in the surface sediments of Xiamen Bay, and the positive matrix factorisation (PMF) model was used to analyse the source. The results show that Zn had the highest mean concentration, followed by Pb, Cr, Cu, As, Cd and Hg, among the seven PTEs. The mean contents of Pb, Zn, Cd, Cu and Hg, and especially Hg and Cd, were higher than the corresponding environmental background values. The average PLI value indicated that the Xiamen Bay sediment was moderately contaminated by PTEs. The Igeo results showed that Xiamen Bay was moderately to strongly polluted by Cd and Hg. The proportions of samples with low, medium and strong risk levels were 11.63%, 74.42%, and 13.95% in surface sediments, respectively. PMF models showed that the input of chemical fertilizer and medication, anthropogenic atmospheric components and terrestrial detritus were the main sources of PTEs in the surface sediment of Xiamen Bay.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1548
Author(s):  
Van-Truc Nguyen ◽  
Nguyen Duy Dat ◽  
Thi-Dieu-Hien Vo ◽  
Duy-Hieu Nguyen ◽  
Thanh-Binh Nguyen ◽  
...  

The present study focused on investigating the contamination and risk assessment for 16 metals in street dust from Ha Noi highway, Ho Chi Minh City. The results indicated that the concentrations of metals (mg/kg) were found, in decreasing order, to be Ti (676.3 ± 155.4) > Zn (519.2 ± 318.9) > Mn (426.6 ±113.1) > Cu (144.7 ± 61.5) > Cr (81.4 ± 22.6) > Pb (52.2 ± 22.9) > V (35.5 ± 5.6) > Ni (30.9 ± 9.5) > Co (8.3 ± 1.2) > As (8.3 ± 2.5) > Sn (7.0 ± 3.6) > B (5.7 ± 0.9) > Mo (4.1 ± 1.7) > Sb (0.8 ± 0.3) > Cd (0.6 ± 0.2) > Se (0.4 ± 0.1). The geo-accumulation index (Igeo) showed moderate contamination levels for Pb, Cd, Cu, Sn, Mo, and Zn. The enrichment factor (EF) values revealed moderate levels for Cd, Cu, Mo, and Sn but moderate–severe levels for Zn. The pollution load index of the heavy metals was moderate. The potential ecological risk (207.43) showed a high potential. Notably, 40.7% and 33.5% of the ecological risks were contributed by Zn and Mn, respectively. These findings are expected to provide useful information to decision-makers about environmental quality control strategies.


2021 ◽  
Author(s):  
Oladele Abdulahi Oguntade ◽  
Nosiru Monday Yisa ◽  
Solomon Oladimeji Olagunju ◽  
Olufemi Sunday Sosanya ◽  
Abiodun Oladipupo Joda ◽  
...  

Abstract Heavy metals such as Cadmium (Cd), Copper (Cu) and Manganese (Mn) in chicken manure can contaminate soil and bioaccumulate in edible tissues of plant to cause food chain contamination. This study investigated the influence of chicken manure on heavy metal load of soil and accumulation in tissues of Celosia argentea. Air-dried chicken manure from battery cages (conventional chicken manure-CCM) and free range birds (local chicken manure-LCM) were used for the pot culture. Chicken manure was applied as amendment at the rate of 0, 4, 6, 8 and 10 t ha-1 in 5 kg soil. Treatments were replicated trice in a Completely Randomized Design. Results showed that soil metal pollution increased with rates of amendment. Metal pollution indices; contamination factor, degree of contamination, elemental pollution index, pollution load index and total contamination factor were significantly (p < 0.001) higher in soil amended with CCM than LCM. Bioaccumulation coefficients (BAC), bioaccumulation factor (BAF) and transfer factor (TF) of metals were higher in tissues of celosia grown with CCM than LCM. Furthermore, above 4 t ha-1, growth and yield were not significantly influenced by amendment rates. Mobility of metals from soil to tissues of celosia increased in the order Cu > Mn > Cd. Chicken manure above 4 t ha-1 potent health risks of Cu exposure to consumers of celosia.


Sign in / Sign up

Export Citation Format

Share Document