scholarly journals Heavy Metal Loading in Surface Sediments along the Kawere Stream, Tarkwa, Ghana

2020 ◽  
Vol 20 (2) ◽  
pp. 77-85
Author(s):  
S. A. Ndur ◽  
S. Y. Nyarko ◽  
I. Quaicoe ◽  
L. B. Osei

Sediment contamination by heavy metals resulting from anthropogenic activities is increasingly becoming a global concern due to the risk it poses to human well-being and ecological integrity at large. The purpose of this study was to assess the heavy metals loading in sediment along the Kawere stream. Ten sediment samples were collected, acid digested and analysed for copper (Cu), lead (Pb), cadmium (Cd), manganese (Mn), zinc (Zn), nickel (Ni), chromium (Cr), cobalt (Co) and iron (Fe) using a Varian AA240FS Atomic Absorption Spectrometer (AAS). The Australian and New Zealand Environment and Conservation Council (ANZECC) guidelines for freshwater sediment quality was used as the benchmark against which the measured metal concentrations were compared. Nemerow’s pollution and potential ecological risk indices were used to evaluate the pollution status and ecological risk levels of the heavy metals in the stream. The results obtained indicated that, except Cu which exceeded the ANZECC trigger value of 65 mg/kg at three sampling sites (K01=171.29 mg/kg, K05=170.83 mg/kg and K07=113.31 mg/kg), all other measured heavy metals concentrations were below their corresponding ANZECC values. Heavy metal pollution assessment showed that three samples (K01, K05 and K07) were slightly polluted, suggesting the likelihood of posing a health threat to the aquatic organisms and humans. Calculated Ecological Risk Index (RI) ranged from 3.229 to 19.750 (RI < 150), representing a low ecological risk. As such, the metals, Cu, Ni, Cd, Pb, Cr, and Zn pose a low ecological risk to the aquatic ecosystem. Although the ecological risk is low based on the current results, constant monitoring of the stream quality is recommended due to the increasing human activities along the stream as well as the sediments ability to accumulate and remobilise heavy metals back into the water column and possibly transferring them through the food chain.   Keywords: Heavy Metals, Sediment, Ecological Risk Assessment, Pollution, Stream

2011 ◽  
Vol 137 ◽  
pp. 262-268 ◽  
Author(s):  
Guo Tao Liu ◽  
Xiao Yan Zheng ◽  
Xu Ya Peng ◽  
Jian Hua Li

The concentrations of heavy metals (Cu, Zn, Pb, Cd, Ni, Cr, As) in the surface sediment of Liangtan River were determined by using atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS), and the toxic effects and sediment pollution assessment were conducted systematically by using Sediment Quality Guidelines (SQG), Hakanson Potential Ecological Risk Index. Moreover, the underlying source of heavy metal was analyzed. The results indicated that the concentrations of Cu, Zn, Pb, Cd, Ni, Cr, As were 29.4-158.1, 40.2-291.3, 23.4-148.2, 0.01-0.79, 6.4-106.2, 17.9-170.6, 1.3-45.1mg/kg respectively. Base on the SQG, besides Cd concentrations of few sampling sites were above the threshold effects level (TEL), the rest heavy metal concentrations of most sampling sites were all between TEL and the probable effects level (PEL), and biological toxicity effects may take place, especially Baishiyi, Hangu and Huilongba, harmful biological toxicity effects may frequently take place. Compared to background values of soil heavy metals in the Three Gorges Reservoir Region, the heavy metals in Liangtan River sediments showed higher ecological risk, and the ecological risk of the heavy metals, arranged from the highest to lowest pollution degree, was as follows Cd, As, Cu, Pb, Ni, Zn, Cr.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1801
Author(s):  
Valentina Andreea Calmuc ◽  
Madalina Calmuc ◽  
Maxim Arseni ◽  
Catalina Maria Topa ◽  
Mihaela Timofti ◽  
...  

It is a well–known fact that heavy metal pollution in sediments causes serious problems not only in the Danube basin, but also in the large and small adjacent river streams. A suitable method for assessing the level of heavy metals and their toxicity in sediments is the calculation of pollution indices. The present research aims to assess heavy metal pollution in the Lower Danube surface sediments collected along the Danube course (between 180 and 60 km) up to the point where the Danube River flows into the Danube Delta Biosphere Reserve (a United Nations Educational, Scientific and Cultural Organization – UNESCO, protected area). In addition, this monitored area is one of the largest European hydrographic basins. Five heavy metals (Cd, Ni, Zn, Pb, Cu) were analyzed in two different seasons, i.e., the autumn of 2018 and the spring of 2019, using the Inductively Coupled Plasma Mass Spectrometry (ICP– MS) technique. Our assessment of heavy metal pollution revealed two correlated aspects: 1. a determination of the potential risks of heavy metals in sediments by calculating the Potential Ecological Risk Index (RI), and 2. an evaluation of the influence of anthropogenic activities on the level of heavy metal contamination in the surface sediments, using three specific pollution indices, namely, the Geo–Accumulation Index (Igeo), the Contamination Factor (CF), and the Pollution Load Index (PLI). The results of this pioneering research activity in the region highlighted the presence of moderate metal (Ni and Cd) pollution and a low potential ecological risk for the aquatic environment.


2020 ◽  
Author(s):  
K. Y. Lim ◽  
N. A. Zakaria ◽  
K. Y. Foo

Abstract The present work is aimed at assessing the aftermath effects of the 2014 flood tragedy on the distribution, pollution status and ecological risks of the heavy metals deposited in the surface river sediment. A series of environmental pollution indexes, specifically the enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), pollution load index (PLI), potential ecological risk index (PERI) and sediment quality guidelines (SQGs) have been adopted. Results revealed that the freshly deposited sediments collected soon after the flood event were dominated by Cu, Fe, Pb, Ni, Zn, Cr and Cd, with the average concentrations of 38.74, 16,892, 17.71, 4.65, 29.22, 42.36 and 0.29 mg/kg, respectively. According to the heavy metal pollution indexes, Pahang River sediments were moderately to severely contaminated with Pb, Ni, Cu, Zn and Cr, while Cd with the highest risk of 91.09 was the predominant element that illustrated an aesthetic ecological risk to the water body after the tragic flood event. The findings highlighted a critical deterioration of the heavy metals content, driven by the catastrophic flood event, which has drastically altered their geochemical cycles, sedimentary pollution status and biochemical balance of the river's environment.


Author(s):  
Xiuling Li ◽  
Henglun Shen ◽  
Yongjun Zhao ◽  
Weixing Cao ◽  
Changwei Hu ◽  
...  

The Yi River, the second longest river in Shandong Province, China, flows through Linyi City and is fed by three tributary rivers, Beng River, Liuqing River, and Su River in the northeastern part of the city. In this study, we determined the concentrations of five heavy metals (Cr, Ni, Cu, Zn, and Pb) in water, sediment, and aquatic macrophyte samples collected from the junction of the four rivers and evaluated the potential ecological risk of heavy metal pollution. Most of the heavy metals in water were in low concentrations with the water quality index (WQI) below 1, suggesting low metal pollution. The sediments showed low heavy metal concentrations, suggesting a low ecological risk based on the potential ecological risk index (RI) and the geo-accumulation index (Igeo). The aquatic plant species Potamogeton crispus accumulated considerable amounts of heavy metals, which were closely related to the metal concentrations of the sediment. The plant species Salvinia natans also showed an excellent metal accumulation capability. Based on our results, the junction of the four rivers is only slightly polluted in terms of heavy metals, and the plant species P. crispus is a suitable bioindicator for sediment heavy metal pollution.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1855 ◽  
Author(s):  
Zike Zhou ◽  
Yongping Wang ◽  
Haowei Teng ◽  
Hao Yang ◽  
Aiju Liu ◽  
...  

In this study, the concentrations of seven heavy metals (Cr, Ni, Cu, Zn, As, Hg, and Pb) and Pb isotope in a sediment core from the Shuanglong reservoir, Southwestern China, were investigated. Based on the constant rate of supply (CRS) model, the age span of a 60 cm sediment sample was determined to range from the years 1944 to 2015. Combined with chronology and heavy metal content, the evolution of the sources and pollution levels of heavy metals showed a changing trend composed of various stages. The sources of heavy metals transitioned from natural origins in 1944–1964 to industrial origins in 1965–2004. The subsequent reduction in heavy metal content was mainly due to the vigorous implementation of environmental protection policies from 2005 to 2012. In recent years (2013–2015), the heavy metal content has increased due to frequent human activity. Principal component analysis (PCA), correlation analysis, and the coefficient of variation (CV) analysis indicated that Cr, Ni, Cu, Zn, and As were derived from natural processes, Pb mainly came from automobile manufacturing, and Hg was mainly from industrial sources. The values of the geo-accumulation index (Ig), single pollution index (Pi), and single potential ecological risk index (Er) showed that the contamination of Hg and Pb was slight to moderate. Moreover, the values of the potential ecological risk index (RI), pollution load index (PLI), and Nemerow index (PN) indicated that the Shuanglong reservoir is under low ecological risk.


2014 ◽  
Vol 651-653 ◽  
pp. 1402-1409
Author(s):  
Gui Ping Xu ◽  
Xiao Fei Wang ◽  
Li Jun Chen

Concentrations of heavy metals in sugarcane soil of Guangxi were determined and the potential ecological risk index was used simultaneously to evaluate the extent of heavy metals enrichment contamination. Results showed that the pollution extent of heavy metals in sugarcane soil by potential ecological risk followed the order: Cd>Pb>Cu>Zn, Cu and Zn were slightly polluted, with small potential ecological harm, while Pb and Cd were above moderately polluted, with heavy potential ecological harm. Principal component analysis was applied to estimate the sources of heavy metals contamination, the results indicated that the first two components accounted for 61.016% and 26.920% of the total variance respectively, 4 kinds of heavy metal elements had similar sources, tailing dam lead-zinc concentrator upstream along the coast was the main sources of heavy metal contamination.


Author(s):  
Zhen Wang ◽  
Jianguo Bao ◽  
Tong Wang ◽  
Haseeb Tufail Moryani ◽  
Wei Kang ◽  
...  

Heavy metal poisoning has caused serious and widespread human tragedies via the food chain. To alleviate heavy metal pollution, particular attention should be paid to low accumulating vegetables and crops. In this study, the concentrations of five hazardous heavy metals (HMs), including copper (Cu), chromium (Cr), lead (Pb), cadmium (Cd), and arsenic (As) were determined from soils, vegetables, and crops near four typical mining and smelting zones. Nemerow’s synthetical pollution index (Pn), Potential ecological risk index (RI), and Geo-accumulation index (Igeo) were used to characterize the pollution degrees. The results showed that soils near mining and metal smelting zones were heavily polluted by Cu, Cd, As, and Pb. The total excessive rate followed a decreasing order of Cd (80.00%) > Cu (61.11%) > As (45.56%) > Pb (32.22%) > Cr (0.00%). Moreover, sources identification indicated that Cu, Pb, Cd, and As may originate from anthropogenic activities, while Cr may originate from parent materials. The exceeding rates of Cu, Cr, Pb, Cd, and As were 6.7%, 6.7%, 66.7%, 80.0%, and 26.7% among the vegetable and crop species, respectively. Particularly, vegetables like tomatoes, bell peppers, white radishes, and asparagus, revealed low accumulation characteristics. In addition, the hazard index (HI) for vegetables and crops of four zones was greater than 1, revealing a higher risk to the health of local children near the mine and smelter. However, the solanaceous fruit has a low-risk index (HI), indicating that it is a potentially safe vegetable type.


2021 ◽  
Vol 9 (2) ◽  
pp. 025-035
Author(s):  
Edori ES ◽  
Iyama WA ◽  
Edori OS

Soil samples were collected at a depth of 0-30cm within two steel markets and a control site in Port Harcourt, Rivers State Nigeria to assess the level of heavy metals (Fe, Pb, Cu, Cd, Cr, Ni and As) in the environment. Atomic Adsorption Spectrophotometer was used to analyze the samples for heavy metals. The concentrations of all the heavy metals in the steel rods markets exceeded that of the control. The results indicated that heavy metals concentrations in the sites were in the order; Mile III > Kala > RSU. The average levels of contamination of heavy metals recorded followed the order Fe > Cr > Cu > Pb > Ni > As > Cd in Mile III, Fe > Pb > Cu > Cr > Ni > As > Cd in Kala and Fe > Cu > Pb > Cr > Ni > As > Cd in RSU (control). Mean concentrations obtained for heavy metals within the months of investigation were; 1420.931±9.155, 7.753±0.184, 8.730±0.050, 2.843±0.124, 9.428±0.122, 7.433±0.047 and 3.732±0.047 mg/Kg for Fe, Pb, Cu, Cd, Cr, Ni and As respectively at the mile III station, while the mean concentrations of heavy metals observed at the Kala station were; 1161.173±1.823, 9.425±0.054, 7.596±0.027, 1.425±0.020, 6.507±0.006, 5.455±0.033 and 1.901±0.010 mg/Kg for Fe, Pb, Cu, Cd, Cr, Ni and As respectively. The mean values of heavy metals concentrations observed at the RSU station within the period were; 892.064±1.025,5.603±0.007, 5.841±0.051, 0.173±0.005, 3.389±0.009, 2.309±0.010 and 0.706±0.006 mg/Kg for Fe, Pb, Cu, Cd, Cr, Ni and As respectively. Pollution assessment models used for assessing the anthropogenic input on the quality of the soil in the area using the control site as the basis of judgment were: contamination factor (CF), pollution load index (PLI), contamination degree (CD), modified contamination degree (mCD), potential ecological risk coefficient (Eir), potential ecological risk index (RI), Geo-accumulation index (Igeo) and anthropogenicity. These indices revealed that the steel markets were contaminated and polluted and poses ecological risks by heavy metals, even though the values obtained were still below the WHO acceptable limits. The steel rods markets need to be adequately monitored and regulated to avoid further soil contamination by heavy metals to a degree that will be dangerous to human health.


2021 ◽  
Author(s):  
Bingyan Jin ◽  
Jinling Wang ◽  
Wei Lou ◽  
Liren Wang ◽  
Jinlong Xu ◽  
...  

Abstract Rivers in urban environments are significant components of their ecosystems but remain under threat of pollution from unchecked discharges of industrial sewage and domestic wastewater. Such river pollution, particularly over the longer term involving heavy metals, is an issue of worldwide concern regarding risks to the ecological environment and human health. In this study, we investigate the long-term pollution characteristics of the Huafei River, an important urban river in Kaifeng, China. River sedimentary samples were analyzed, assessing the degree and ecological risk of heavy metal pollution using the geo-accumulation index and potential ecological risk index methods; whilst Pearson’s correlation, principal component, and cluster analyses were used to identify the sources of pollution. The results show that heavy metal concentrations are significantly higher than their corresponding fluvo-aquic soil background values in China, and the geo-accumulation indexes indicate, that of the 8 heavy metals identified, Hg is most prevalent, followed in sequence by Cd > Zn > Cu > Pb > Ni > As > Cr. The potential ecological risk index of the Huafei river is very high, with the potential ecological risk intensity highest in the midstream and downstream sections where it is recommended that pollution control is carried out, especially concerning Hg and Cd. Long-term sequence analysis indicates that Cu and Pb dropped sharply from 1998 to 2017, but rebounded in 2019, and that Zn shows a continuous decreasing trend. Four main sources for the heavy metal contaminants were identified: Cr, Cu, Ni, Pb, Zn and Hg derived mainly from industrial activities, traffic sources and natural sources; Cd originated mainly from industrial and agricultural activities; whilst As was mainly associated with industrial activities. It is anticipated that the findings of this study will provide theoretical references for the effective control and scientific management of heavy metal pollution in the Huafei River and its surrounding areas.


2013 ◽  
Vol 726-731 ◽  
pp. 1809-1812
Author(s):  
Ji Cai Qiu

To find out the heavy metal pollution condition from the Beng River sediment, we see the region from Beng River Rubber Dam to the Yimeng Road Bridge as research object.We monitored and surveyed on the three kinds of metal components (Cu, Zn, Cd) in the sediments from eight sectionsthe. With reference to the relevant domestic standards, we established sediment pollution evaluation criteria suitable for the region., We conducted the evaluation of ecological risk and pollution levels with the detection results by standard index of the potential ecological risk index and Nemerow France France. The results showed that: the heavy metals ecological risk index in Sediment from Beng River Rubber Dam to the Yimeng Road bridge section, Nemerow pollution index was 6.95, It was heavily polluted. This showed that the heavy metals in river sediment pollution was very serious.


Sign in / Sign up

Export Citation Format

Share Document