Assessment of acid mine drainage formation using geochemical and static tests in Mutki (Bitlis, SE Turkey) mineralization area

2020 ◽  
Vol 29 (7) ◽  
pp. 1189-1210
Author(s):  
Mehmet Ali GÜCER ◽  
Selçuk ALEMDAĞ ◽  
Enver AKARYALI

In this study, geochemical analyses, as well as short-term contact leaching and acid-base accounting tests, were carried out to determine the occurrence of acid mine drainage (AMD) by static tests in the ore stockpile areas at the Mutki Cu-Fe-Cr deposit (Bitlis, SE Turkey). According to the short-term contact leaching tests, the high enrichment in trace element concentrations in ore-bearing samples, especially in potentially toxic metals such as Cr, Cu, Mn, and Zn, were directly related to sulphide and oxide mineralizations. The pH (3.27–4.05) values of water samples, together with the classification of the intracontinental water resources, indicated that the water quality is the fourth class. Leaching tests, paste pH (3.42–4.46) and sulphide-sulphur (3.9–13.4 wt%) values also suggested that there was AMD production potential in the mineralization area. The AMD production potential was supported by the high mobility of several elements, such as Fe, Mg, Cr, As, Cu, S, and Zn. In ore samples, net neutralization potential (NNP) and net potential ratio (NPR) values were less than –20 kg CaCO3/t and 1, respectively. The basalts forming the basement rock of the stockpile area were characterized by permeable to slightly permeable properties that potentially increase the contamination risk of the groundwater due to seepage in the stockpile area. In order to prevent seepage in the stock area, geomembrane (synthetic waterproofing covers) should be laid at the base to ensure impermeability. The improvements planned in the stock area were modeled by the finite element method and seepage discharges at a depth of 5 m were determined as 1.34 × 10–17m3/s. Thanks to these planned applications, surface and groundwater pollution can be efficiently prevented.

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1081
Author(s):  
Zhou Ran ◽  
Yongtai Pan ◽  
Wenli Liu

The seepage and diffusion of acid mine drainage (AMD) generated from self-heating coal gangue tailings caused acid pollution to the surrounding soil and groundwater. Red mud derived from the alumina smelting process has a high alkali content. To explore the feasibility of co-disposal of coal gangue and red mud for prevention of AMD, coal gangue and red mud were sampled from Yangquan (Shanxi Province, China), and dynamic leaching tests were carried out through the automatic temperature-controlled leaching system under the conditions of different temperatures, mass ratios, and storage methods. Our findings indicated that the heating temperature had a significant effect on the release characteristics of acidic pollutants derived from coal gangue, and that the fastest rate of acid production corresponding to temperature was 150 °C. The co-disposal dynamic leaching tests indicated that red mud not only significantly alleviated the release of AMD but also that it had a long-term effect on the treatment of acid pollution. The mass ratio and stacking method were selected to be 12:1 (coal gangue: red mud) and one layer was alternated (coal gangue covered with red mud), respectively, to ensure that the acid-base pollution indices of leachate reached the WHO drinking-water quality for long-term discharge. The results of this study provided a theoretical basis and data support for the industrial field application of solid waste co-treatment.


2020 ◽  
Vol 13 (22) ◽  
Author(s):  
Cengiz Karagüzel ◽  
Özer Ören ◽  
Müge Şahbaz ◽  
Ömer Canıeren ◽  
Uğur Demir ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 771-784
Author(s):  
Latipa Henim ◽  
Steven Pearce

ABSTRAK Indonesia adalah negara yang kaya akan sumber daya alam, baik berupa sumber daya alam pulih maupun yang tidak pulih. Industri pertambangan adalah salah satu aktivitas yang bergerak dalam  mengolah sumber daya alam yang tidak pulih yang dapat memberikan dampak positif maupun negatif baik dari sisi sosial, ekonomi maupun lingkungan. Air asam tambang adalah salah satu dampak dari industri pertambangan yang harus ditangani secara serius yang terbentuk akibat reaksi mineral sulfida (pirit) dan logam berat yang terpapar ke media air dan udara yang berasal dari batuan yang terbuka pada saat  aktivitas penambangan berlangsung. Sejak tahun 2013, tambang emas Martabe telah menerapkan manajemen air asam tambang (AAT) dalam konstruksi bendungan TSF dengan enkapsulasi sederhana yang dirancang dengan dua kategori utama batuan PAF (Potential Acid Forming) dan NAF (Non Acid Forming) sebagai bagian dari material tanggul TSF konstruksi hilir dan juga mengembangkan basis data karakteristik geokimia material waste di lokasi tambang emas Martabe. NAPP (Net Acid Production Potential) adalah metode standar industri yang digunakan untuk menentukan potensi untuk mengoksidasi dan menghasilkan bahan limbah asam, yang nantinya akan ditempatkan di bendungan TSF dengan metode enkapsulasi. Metode ini bertujuan untuk membungkus material sulfida beresiko tinggi yang sedang di tambang di Martabe dengan lapisan penyegel (sealing layer) dengan mengambil keuntungan dari iklim (curah hujan yang tinggi) dan sifat material ROM (run of mine). Konstruksi lapisan penyegelan dan penjadwalan material waste dilakukan dengan pengembangan strategi operasional pengelolaan limbah yang terperinci dan terintegrasi. Monitoring rutin dengan instrument WRSF (Waste Rock Storage Facility) untuk pengukuran oksigen dan juga dari pengukuran kualitas air menunjukkan kalau enkapsulasi material waste pada embakment TSF berhasil mencegah pembentukan air asam tambang. Kata kunci: material waste, air asam tambang, naf, paf, bendungan tailing, model enkapsulasi  ABSTRACT Indonesia is a country that is rich in natural resources, both in renewable and non-renewable. The mining industry is one of the activities that is engaged in processing non-renewable natural resources that can have positive and negative impacts both in terms of social, economic and environmental aspects. Acid mine drainage is one of the impacts of the mining industry which must be dealt with seriously which is formed due to the reaction of sulfide minerals (pyrite) and heavy metals which is exposed with water and air from rocks during mining activities.Since 2013, the Martabe gold mine has implemented mine acid drainage management (AMD) in TSF dam construction with simple encapsulation designed, with two main categories of PAF (Potential Acid Forming) and NAF (Non Acid Forming) rocks as part of construction TSF embankment material downstream and also develop the geochemical characteristics database of waste material at the Martabe gold mine site. NAPP (Net Acid Production Potential) value is an industry standard method to determine the potential to oxidize and produce acid waste materials, which will be placed in the TSF dam by encapsulation model. This method aims to wrap the high risk sulfide material in a mine at Martabe sealing layer to take advantage of both the climate (high rai fall) and material properties of run of mine (ROM). The construction of sealing layer and scheduling of waste is made possible by the development a detailed and integrated operational waste management strategy. Routine monitoring with the WRSF (Waste Rock Storage Facility) instrument for measuring oxygen and also from measurements of water quality shows that the encapsulation of waste material in TSF embankments successfully prevents the formation of acid mine drainage.  Key words: waste materials, acid mine drainage, naf, paf, tailing storage facility, encapsulation model 


Sign in / Sign up

Export Citation Format

Share Document