acid mine drainage generation
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 175 ◽  
pp. 107282
Author(s):  
Thauan Gomes ◽  
Elidio Angioletto ◽  
Marintho Bastos Quadri ◽  
Maykon Cargnin ◽  
Hilária Mendes de Souza

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 280
Author(s):  
Asif Qureshi ◽  
Bruno Bussière ◽  
Mostafa Benzaazoua ◽  
Fannie Lessard ◽  
Vincent Boulanger-Martel

It is essential to develop effective mine waste management approaches and mine site reclamation techniques to curtail the adverse effects of mining processes on the natural environment. This study focuses on the use of partially desulphurized tailings as a moisture-retaining layer in an insulation cover with capillary barrier effects (ICCBE). Tailings were obtained from a nickel ultramafic ore processing plant at a mining company located in a continuous permafrost region of northern Québec, Canada. The geochemical response of tailings at two different sulphur contents (0.4 and 0.8 wt%), with and without ICCBEs, was tested by applying eight freeze-thaw and wetting cycles. Desulphurization of the tailings allowed to reduce the content of sulphide minerals by about 90%, from ~22 wt% to around 1.2–2.2 wt%. Column kinetic geochemical tests showed that Ni leaching was significantly reduced to concentrations ranging between 0.01–0.22 mg L−1 compared to 0.63–1.92 mg L−1 from the raw tailings (thanks to the desulphurization process). Zinc release was maintained around 0.04–1.72 mg L−1 compared to 0.4–3.69 mg L−1 from the raw tailing. Although all the columns produced leachates displaying circumneutral to slightly alkaline pH, the columns with ICCBE are expected to prevent acid mine drainage generation longer than the other columns due to reduced sulphide content and a constantly high degree of saturation maintained by capillary barrier effects.


2020 ◽  
Vol 08 (05) ◽  
pp. 56-64 ◽  
Author(s):  
Thant Swe Win ◽  
Sendy Dwiki ◽  
Akihiro Hamanaka ◽  
Takashi Sasaoka ◽  
Hideki Shimada ◽  
...  

2013 ◽  
Vol 825 ◽  
pp. 84-87 ◽  
Author(s):  
Michel Abanto ◽  
Nicolaza Pariona ◽  
Julio Calderon ◽  
Gregory Guerra ◽  
Rina Ramirez ◽  
...  

Acidophilic iron-oxidizing microorganisms are important in both environmental and biotechnological applications. These microorganisms are known to accelerate the dissolution of sulfur minerals such as pyrite (FeS2), leading to the acid mine drainage generation , a serious pollution problem, that makes these microorganisms essential to the commercial processing of minerals and sulfur. In order to answer this question, diversity of native acidophilic bacteria isolated from acid mine drainage of Peru was evaluated. The samples were collected from Yanacocha mining (3000 m.a.s.l.) located in the North of Cajamarca region, Yanamina mining (4440 m.a.s.l.) located in the middle of Huancavelica region; finally, SPCC mining (2000 m.a.s.l.) located in the South of Moquegua region. We isolated 11 strains from which three were identified asAcidithiobacillus ferrooxidans, two asAt. ferrivorans, two asAt. ferridurans,three asLeptospirillum ferrooxidansand one asAcidiphilium sp.by comparative sequencing of PCR-amplified 16S rRNA genes. Phylogenetic analysis of the 16S rRNA genes revealed that some of the strains isolated are closely related to other already known, but there are some with similarities lower than < 95 percent. Our results provide the first study on the diversity of iron-oxidizing bacteria isolated from acid mine drainage of Peru.


Sign in / Sign up

Export Citation Format

Share Document