Using Chlorhexidine Gluconate Baths to Reduce Hospital-Acquired Infections

2010 ◽  
Vol 4 (1) ◽  
pp. 35-35
Author(s):  
. .
2014 ◽  
Vol 42 (2) ◽  
pp. 129-132 ◽  
Author(s):  
Janet A. Popp ◽  
A. Joseph Layon ◽  
Robert Nappo ◽  
Winston T. Richards ◽  
David W. Mozingo

2012 ◽  
Vol 21 (5) ◽  
pp. 338-342 ◽  
Author(s):  
Jan Powers ◽  
Jennifer Peed ◽  
Lindsey Burns ◽  
Mary Ziemba-Davis

Background Research has demonstrated the hazards associated with patients’ bath basins and microbial contamination. In a previous study, soap and water bath basins in 3 acute care hospitals were found to be reservoirs for bacteria and potentially associated with the development of hospital-acquired infections. Bacteria grew in 98% of the basin samples; the most common were enterococci (54%), and 32% were gram-negative organisms. Objective To assess the presence of bacterial contaminants in wash basins when chlorhexidine gluconate solution is used in place of standard soap and water to wash patients. Methods Bathing with chlorhexidine gluconate is the standard of practice for all patients in intensive care units at St Vincent Hospital. Specimens from 90 bath basins used for 5 days or more were cultured for bacterial growth to assess contamination of basins when chlorhexidine gluconate is used. Results Of the 90 basins cultured, only 4 came back positive for microbial growth; all 4 showed growth of gram-positive organisms. Three of the 4 organisms were identified as coagulase-negative staphylococcus, which is frequently found on the skin. This translates into a 95.5% reduction in bacterial growth when chlorhexidine gluconate is used as compared with soap and water in the previous study (Fisher exact test, P < .001). The only factor that was related to positive cultures of samples from basins was the sex of the patient. Discussion Compared with the previous study examining microbial contamination of basins when soap and water was used to bathe patients, bacterial growth in patients’ bath basins decreased significantly with the use of chlorhexidine gluconate, drastically reducing the risk for hospital-acquired infections. Such reduced risk is especially important for critically ill patients at high risk for bacterial infection.


2016 ◽  
Vol 60 (4) ◽  
pp. 2209-2221 ◽  
Author(s):  
Pooja Bhardwaj ◽  
Elizabeth Ziegler ◽  
Kelli L. Palmer

ABSTRACTChlorhexidine is a bisbiguanide antiseptic used for infection control. Vancomycin-resistantE. faecium(VREfm) is among the leading causes of hospital-acquired infections. VREfm may be exposed to chlorhexidine at supra- and subinhibitory concentrations as a result of chlorhexidine bathing and chlorhexidine-impregnated central venous catheter use. We used RNA sequencing to investigate how VREfm responds to chlorhexidine gluconate exposure. Among the 35 genes upregulated ≥10-fold after 15 min of exposure to the MIC of chlorhexidine gluconate were those encoding VanA-type vancomycin resistance (vanHAX) and those associated with reduced daptomycin susceptibility (liaXYZ). We confirmed thatvanAupregulation was not strain or species specific by querying other VanA-type VRE. VanB-type genes were not induced. ThevanHpromoter was found to be responsive to subinhibitory chlorhexidine gluconate in VREfm, as was production of the VanX protein. UsingvanHreporter experiments withBacillus subtilisand deletion analysis in VREfm, we found that this phenomenon is VanR dependent. Deletion ofvanRdid not result in increased chlorhexidine susceptibility, demonstrating thatvanHAXinduction is not protective against chlorhexidine. As expected, VanA-type VRE is more susceptible to ceftriaxone in the presence of sub-MIC chlorhexidine. Unexpectedly, VREfm is also more susceptible to vancomycin in the presence of subinhibitory chlorhexidine, suggesting that chlorhexidine-induced gene expression changes lead to additional alterations in cell wall synthesis. We conclude that chlorhexidine induces expression of VanA-type vancomycin resistance genes and genes associated with daptomycin nonsusceptibility. Overall, our results indicate that the impacts of subinhibitory chlorhexidine exposure on hospital-associated pathogens should be further investigated in laboratory studies.


2012 ◽  
Vol 6 (2) ◽  
pp. 7-10
Author(s):  
Mohammad Murshed ◽  
Sabeena Shahnaz ◽  
Md. Abdul Malek

Isolation and identification of post operative hospital acquired infection was carried out from July 2008 to December 2008 in Holy Family Red Crescent Medical College Hospital (private hospital). The major pathogen of wound infection was E. coli. A total; of 120 samples were collected from the surrounding environment of post operative room like floor, bed sheets, instruments, dressing materials, catheter, nasogastric and endotracheal tube. E. coli (40%) was the predominant organism followed by S. aureus (24%). DNA fingerprinting analysis using pulsed field gel electreopheresis of XbaI restriction digested genomic DNA showed that clonal relatedness between the two clinical nd environmental isolates were 100%.DOI: http://dx.doi.org/10.3329/bjmm.v6i2.19369 Bangladesh J Med Microbiol 2012; 06(02): 7-10


Sign in / Sign up

Export Citation Format

Share Document