Influence of Planting Dates and Plant Population on Soybean Yield and Yield Components under Peshawar Conditions

2000 ◽  
Vol 3 (11) ◽  
pp. 1892-1896
Author(s):  
Amir Zaman Kha . ◽  
M. Akhtar . ◽  
M. Riaz . ◽  
N. Ahmad . ◽  
P. Shah .
1978 ◽  
Vol 14 (3) ◽  
pp. 239-244 ◽  
Author(s):  
W. Godfrey-Sam-Aggrey

SUMMARYEffects of plant population on mean yield and yield components of 2-year sole cassava crops were studied on Njala upland soils of Sierra Leone in two experiments. Increasing plant population of multi-shoot Cocoa cassava over 7000/ha decreased all the parameters studied except top/root weight ratio, which increased. The observed effects were attributed to competition for environmental resources, since area of land/plant unit decreased as plant population increased. The relations between plant populations and yields of fresh root and cortex dry matter were asymptotic, indicating that the respective yields were products of the vegetative phase of cropping.


2021 ◽  
Vol 37 ◽  
pp. e37042
Author(s):  
Marcelo De Almeida Silva ◽  
Ana Carolina De Santana Soares ◽  
Melina Rodrigues Alves Carnietto ◽  
Alexandrius De Moraes Barbosa

Studies addressing the interaction of different spatial arrangement in soybean are needed in order to achieve management that leads to higher grain yield associated with rational seed use. The objective of this work was to evaluate the yield components and productivity of an undetermined growth type soybean as a function of different row spacing and plant densities. The treatments consisted of three row spaces (0.25, 0.35 and 0.45 m) and three plant population densities (30, 40 and 50 plants/m²). There was no interaction of row spaces and plant population on soybean yield. Regarding the overall spacing average, the grain yield of the population of 30/m² plants was higher than the productivity of the populations of 40 and 50/m² plants. The largest populations reduce plant sizes due to greater competition between plants. In addition, smaller populations promote higher individual plant yields due to the increase components of the production. This characteristic is defined as the ability of the plant to change its morphology and yield components in order to adapt to the conditions imposed by the spatial arrangement.


2014 ◽  
Vol 6 (4) ◽  
pp. 166 ◽  
Author(s):  
B. M. Sani ◽  
I. U. Abubakar ◽  
A. M. Falaki ◽  
H. Mani ◽  
M. M. Jaliya

An experiment was conducted to assess the yield and yield components of QPM genotypes to plant population under irrigated conditions in a semi arid ecology of Northern Nigeria. Field trials were conducted at the Irrigation Research Station, Institute for Agricultural Research, Kadawa (11° 39'N, 08° 20'E) and 500 m above sea level) during dry seasons 2007, 2008 and 2009 to study the effect of (Zea mays L.) genotypes (TZE-W Pop X 1368, EV-DT W99 STR and DMR-ESRW), four plant population (33333, 44444, 55555 and 66666 plants ha-1) and three irrigation scheduling (40, 60 and 80 centibars soil moisture tension) on the growth and yield of quality protein maize. A split plot design was used with combinations of genotypes and irrigation regimes assigned to the main plot and plant population assigned to the sub-plot. The treatments were replicated three times. The study revealed that genotype EV-DT W99 STR had significantly higher weight of ears per plant, cob length, cob diameter, number of rows per cob, 100 grain weight, grain yield, shelling percentage and harvest index than the other two genotypes used in the trial. Irrigating at 40 and 60 centibars significantly increased weight of ears per plant, while delayed irrigation significantly depressed total dry matter production. Based on the results obtained in this study, it can be concluded that the use of genotype EV-DT W99 STR, at 60 centibars irrigation scheduling and population of 55,555 plants ha-1 had resulted in good agro-physiological characters of QPM at Kadawa.


1979 ◽  
Vol 19 (100) ◽  
pp. 570 ◽  
Author(s):  
JA Thompson ◽  
IG Fenton

Three experiments conducted in the Murrumbidgee Irrigation Area of southern New South Wales examined the influence of plant population on the yield and yield components of irrigated sunflowers. Populations ranged from 25,000 plants ha-1 to 140,000 plants ha-1. Furrow irrigation was employed with rows spaced 76 cm apart. In two of the experiments the wide range of plant populations examined had little effect on seed yield. Individual seed weight (g 1000-1) and seed number per head interacted with plant population so that seed yield was only marginally affected. In the remaining experiment, insufficient total dry matter production without improved harvest index prevented the attainment of an acceptable seed yield. There was a consistent trend for harvest index to fall with increasing plant population. Values recorded ranged from 0.36 to 0.23. Plant population had little effect on oil percentage. A plant population of 50,000 plants ha-1 is suggested as a minimum recommendation for irrigated sunflowers in southern New South Wales.


Sign in / Sign up

Export Citation Format

Share Document