scholarly journals UDCA: Energy Optimization in Wireless Sensor Networks Using Uniform Distributed Clustering Algorithms

2011 ◽  
Vol 3 (3) ◽  
pp. 191-200 ◽  
Author(s):  
A.P. Abidoye ◽  
N.A. Azeez ◽  
A.O. Adesina ◽  
K.K. Agbele
Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2312 ◽  
Author(s):  
Antonio-Jesus Yuste-Delgado ◽  
Juan-Carlos Cuevas-Martinez ◽  
Alicia Triviño-Cabrera

Clustering algorithms are necessary in Wireless Sensor Networks to reduce the energy consumption of the overall nodes. The decision of which nodes are the cluster heads (CHs) greatly affects the network performance. The centralized clustering algorithms rely on a sink or Base Station (BS) to select the CHs. To do so, the BS requires extensive data from the nodes, which sometimes need complex hardware inside each node or a significant number of control messages. Alternatively, the nodes in distributed clustering algorithms decide about which the CHs are by exchanging information among themselves. Both centralized and distributed clustering algorithms usually alternate the nodes playing the role of the CHs to dynamically balance the energy consumption among all the nodes in the network. This paper presents a distributed approach to form the clusters dynamically, but it is occasionally supported by the Base Station. In particular, the Base Station sends three messages during the network lifetime to reconfigure the s k i p value of the network. The s k i p , which stands out as the number of rounds in which the same CHs are kept, is adapted to the network status in this way. At the beginning of each group of rounds, the nodes decide about their convenience to become a CH according to a fuzzy-logic system. As a novelty, the fuzzy controller is as a Tagaki–Sugeno–Kang model and not a Mandami-one as other previous proposals. The clustering algorithm has been tested in a wide set of scenarios, and it has been compared with other representative centralized and distributed fuzzy-logic based algorithms. The simulation results demonstrate that the proposed clustering method is able to extend the network operability.


2020 ◽  
Vol 16 (7) ◽  
pp. 155014772090877
Author(s):  
Israel Edem Agbehadji ◽  
Samuel Ofori Frimpong ◽  
Richard C Millham ◽  
Simon James Fong ◽  
Jason J Jung

The current dispensation of big data analytics requires innovative ways of data capturing and transmission. One of the innovative approaches is the use of a sensor device. However, the challenge with a sensor network is how to balance the energy load of wireless sensor networks, which can be achieved by selecting sensor nodes with an adequate amount of energy from a cluster. The clustering technique is one of the approaches to solve this challenge because it optimizes energy in order to increase the lifetime of the sensor network. In this article, a novel bio-inspired clustering algorithm was proposed for a heterogeneous energy environment. The proposed algorithm (referred to as DEEC-KSA) was integrated with a distributed energy-efficient clustering algorithm to ensure efficient energy optimization and was evaluated through simulation and compared with benchmarked clustering algorithms. During the simulation, the dynamic nature of the proposed DEEC-KSA was observed using different parameters, which were expressed in percentages as 0.1%, 4.5%, 11.3%, and 34% while the percentage of the parameter for comparative algorithms was 10%. The simulation result showed that the performance of DEEC-KSA is efficient among the comparative clustering algorithms for energy optimization in terms of stability period, network lifetime, and network throughput. In addition, the proposed DEEC-KSA has the optimal time (in seconds) to send a higher number of packets to the base station successfully. The advantage of the proposed bio-inspired technique is that it utilizes random encircling and half-life period to quickly adapt to different rounds of iteration and jumps out of any local optimum that might not lead to an ideal cluster formation and better network performance.


Sign in / Sign up

Export Citation Format

Share Document