Comparing the Cooling Rates of Rotating Forearm Ice Towels and Passive Rest Following Exercise-Induced Hyperthermia

Author(s):  
William M. Adams ◽  
Emily C. Morris ◽  
Stacey L. Walton ◽  
Eleni M. Karras
2008 ◽  
Vol 40 (Supplement) ◽  
pp. S336
Author(s):  
Bruno Lemire ◽  
Daniel Gagnon ◽  
Lucy Dorman ◽  
Ollie Jay ◽  
Glen P. Kenny

2016 ◽  
Vol 51 (6) ◽  
pp. 500-501 ◽  
Author(s):  
Emma A. Nye ◽  
Jessica R. Edler ◽  
Lindsey E. Eberman ◽  
Kenneth E. Games

Reference: Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):2464−2472. Clinical Questions: Do optimal procedures exist for implementing cold-water immersion (CWI) that yields high cooling rates for hyperthermic individuals? Data Sources: One reviewer performed a literature search using PubMed and Web of Science. Search phrases were cold water immersion, forearm immersion, ice bath, ice water immersion, immersion, AND cooling. Study Selection: Studies were included based on the following criteria: (1) English language, (2) full-length articles published in peer-reviewed journals, (3) healthy adults subjected to exercise-induced hyperthermia, and (4) reporting of core temperature as 1 outcome measure. A total of 19 studies were analyzed. Data Extraction: Pre-immersion core temperature, immersion water temperature, ambient temperature, immersion duration, and immersion level were coded a priori for extraction. Data originally reported in graphical form were digitally converted to numeric values. Mean differences comparing the cooling rates of CWI with passive recovery, standard deviation of change from baseline core temperature, and within-subjects r were extracted. Two independent reviewers used the Physiotherapy Evidence Database (PEDro) scale to assess the risk of bias. Main Results: Cold-water immersion increased the cooling rate by 0.03°C/min (95% confidence interval [CI] = 0.03, 0.04°C/min) compared with passive recovery. Cooling rates were more effective when the pre-immersion core temperature was ≥38.6°C (P = .023), immersion water temperature was ≤10°C (P = .036), ambient temperature was ≥20°C (P = .013), or immersion duration was ≤10 minutes (P < .001). Cooling rates for torso and limb immersion (mean difference = 0.04°C/min, 95% CI = 0.03, 0.06°C/min) were higher (P = .028) than those for forearm and hand immersion (mean difference = 0.01°C/min, 95% CI = −0.01, 0.04°C/min). Conclusions: Hyperthermic individuals were cooled twice as fast by CWI as by passive recovery. Therefore, the former method is the preferred choice when treating patients with exertional heat stroke. Water temperature should be <10°C, with the torso and limbs immersed. Insufficient published evidence supports CWI of the forearms and hands.


2009 ◽  
Vol 41 (8) ◽  
pp. 1633-1639 ◽  
Author(s):  
BRUNO B. LEMIRE ◽  
DANIEL GAGNON ◽  
OLLIE JAY ◽  
GLEN P. KENNY

2014 ◽  
Vol 50 (5) ◽  
pp. 822-829 ◽  
Author(s):  
Julien D. Périard ◽  
Sebastien Racinais ◽  
Martin W. Thompson

2018 ◽  
Vol 48 (12) ◽  
pp. 2887-2889 ◽  
Author(s):  
Washington Pires ◽  
Samuel Penna Wanner ◽  
Danusa Dias Soares ◽  
Cândido Celso Coimbra

2017 ◽  
Vol 52 (2) ◽  
pp. 108-116 ◽  
Author(s):  
Pearl M. S. Tan ◽  
Eunice Y. N. Teo ◽  
Noreffendy B. Ali ◽  
Bryan C. H. Ang ◽  
Iswady Iskandar ◽  
...  

Context: Rapid diagnosis and expeditious cooling of individuals with exertional heat stroke is paramount for survival. Objective: To evaluate the efficacy of various cooling systems after exercise-induced hyperthermia. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty-two men (age = 24 ± 2 years, height = 1.76 ± 0.07 m, mass = 70.7 ± 9.5 kg) participated. Intervention(s): Each participant completed a treadmill walk until body core temperature reached 39.50°C. The treadmill walk was performed at 5.3 km/h on an 8.5% incline for 50 minutes and then at 5.0 km/h until the end of exercise. Each participant experienced 4 cooling phases in a randomized, repeated-crossover design: (1) no cooling (CON), (2) body-cooling unit (BCU), (3) EMCOOLS Flex.Pad (EC), and (4) ThermoSuit (TS). Cooling continued for 30 minutes or until body core temperature reached 38.00°C, whichever occurred earlier. Main Outcome Measure(s): Body core temperature (obtained via an ingestible telemetric temperature sensor) and heart rate were measured continuously during the exercise and cooling phases. Rating of perceived exertion was monitored every 5 minutes during the exercise phase and thermal sensation every minute during the cooling phase. Results: The absolute cooling rate was greatest with TS (0.16°C/min ± 0.06°C/min) followed by EC (0.12°C/min ± 0.04°C/min), BCU (0.09°C/min ± 0.06°C/min), and CON (0.06°C/min ± 0.02°C/min; P < .001). The TS offered a greater cooling rate than all other cooling modalities in this study, whereas EC offered a greater cooling rate than both CON and BCU (P < .0083 for all). Effect-size calculations, however, showed that EC and BCU were not clinically different. Conclusion: These findings provide objective evidence for selecting the most effective cooling system of those we evaluated for cooling individuals with exercise-induced hyperthermia. Nevertheless, factors other than cooling efficacy need to be considered when selecting an appropriate cooling system.


Sign in / Sign up

Export Citation Format

Share Document