ramp exercise
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 6)

H-INDEX

20
(FIVE YEARS 2)

Author(s):  
Alan Chorley ◽  
Richard P. Bott ◽  
Simon Marwood ◽  
Kevin L. Lamb

Abstract Purpose The aim of this study was to investigate the individual $$W^{^{\prime}}$$ W ′ reconstitution kinetics of trained cyclists following repeated bouts of incremental ramp exercise, and to determine an optimal mathematical model to describe $$W^{^{\prime}}$$ W ′ reconstitution. Methods Ten trained cyclists (age 41 ± 10 years; mass 73.4 ± 9.9 kg; $$\dot{V}{\text{O}}_{2\max }$$ V ˙ O 2 max 58.6 ± 7.1 mL kg min−1) completed three incremental ramps (20 W min−1) to the limit of tolerance with varying recovery durations (15–360 s) on 5–9 occasions. $$W^{^{\prime}}$$ W ′ reconstitution was measured following the first and second recovery periods against which mono-exponential and bi-exponential models were compared with adjusted R2 and bias-corrected Akaike information criterion (AICc). Results A bi-exponential model outperformed the mono-exponential model of $$W^{^{\prime}}$$ W ′ reconstitution (AICc 30.2 versus 72.2), fitting group mean data well (adjR2 = 0.999) for the first recovery when optimised with parameters of fast component (FC) amplitude = 50.67%; slow component (SC) amplitude = 49.33%; time constant (τ)FC = 21.5 s; τSC = 388 s. Following the second recovery, W′ reconstitution reduced by 9.1 ± 7.3%, at 180 s and 8.2 ± 9.8% at 240 s resulting in an increase in the modelled τSC to 716 s with τFC unchanged. Individual bi-exponential models also fit well (adjR2 = 0.978 ± 0.017) with large individual parameter variations (FC amplitude 47.7 ± 17.8%; first recovery: (τ)FC = 22.0 ± 11.8 s; (τ)SC = 377 ± 100 s; second recovery: (τ)FC = 16.3.0 ± 6.6 s; (τ)SC = 549 ± 226 s). Conclusions W′ reconstitution kinetics were best described by a bi-exponential model consisting of distinct fast and slow phases. The amplitudes of the FC and SC remained unchanged with repeated bouts, with a slowing of W′ reconstitution confined to an increase in the time constant of the slow component.


2021 ◽  
Vol 30 (160) ◽  
pp. 200160
Author(s):  
Susan A. Ward

“Ventilatory efficiency” is widely used in cardiopulmonary exercise testing to make inferences regarding the normality (or otherwise) of the arterial CO2 tension (PaCO2) and physiological dead-space fraction of the breath (VD/VT) responses to rapid-incremental (or ramp) exercise. It is quantified as: 1) the slope of the linear region of the relationship between ventilation (V′E) and pulmonary CO2 output (V′CO2); and/or 2) the ventilatory equivalent for CO2 at the lactate threshold (V′E/V′CO2) or its minimum value (V′E/V′CO2min), which occurs soon after but before respiratory compensation. Although these indices are normally numerically similar, they are not equally robust. That is, high values for V′E/V′CO2 and V′E/V′CO2min provide a rigorous index of an elevated VD/VT when PaCO2 is known (or can be assumed) to be regulated. In contrast, a high V′E–V′CO2 slope on its own does not, as account has also to be taken of the associated normally positive and small V′E intercept. Interpretation is complicated by factors such as: the extent to which PaCO2 is actually regulated during rapid-incremental exercise (as is the case for steady-state moderate exercise); and whether V′E/V′CO2 or V′E/V′CO2min provide accurate reflections of the true asymptotic value of V′E/V′CO2, to which the V′E–V′CO2 slope approximates at very high work rates.


2021 ◽  
Vol 77 (1) ◽  
pp. 57-64
Author(s):  
Kohei Ashikaga ◽  
Haruki Itoh ◽  
Tomoko Maeda ◽  
Hidetaka Itoh ◽  
Yuri Ichikawa ◽  
...  

2020 ◽  
Vol 52 (7S) ◽  
pp. 637-638
Author(s):  
Malloree C. Rice ◽  
Wayne A. Mays ◽  
Andrea L. Grzeszczak ◽  
Sandra K. Knecht ◽  
Justine D. Shertzer ◽  
...  

2019 ◽  
Vol 127 (6) ◽  
pp. 1519-1527 ◽  
Author(s):  
Danilo Iannetta ◽  
Rafael de Almeida Azevedo ◽  
Daniel A. Keir ◽  
Juan M. Murias

The dissociation between constant work rate of O2 uptake (V̇o2) and ramp V̇o2 at a given work rate might be mitigated during slowly increasing ramp protocols. This study characterized the V̇o2 dynamics in response to five different ramp protocols and constant-work-rate trials at the maximal metabolic steady state (MMSS) to characterize 1) the V̇o2 gain (G) in the moderate, heavy, and severe domains, 2) the mean response time of V̇o2 (MRT), and 3) the work rates at lactate threshold (LT) and respiratory compensation point (RCP). Eleven young individuals performed five ramp tests (5, 10, 15, 25, and 30 W/min), four to five time-to-exhaustions for critical power estimation, and two to three constant-work-rate trials for confirmation of the work rate at MMSS. G was greatest during the slowest ramp and progressively decreased with increasing ramp slopes (from ~12 to ~8 ml·min−1·W−1, P < 0.05). The MRT was smallest during the slowest ramp slopes and progressively increased with faster ramp slopes (1 ± 1, 2 ± 1, 5 ± 3, and 10 ± 4, 15 ± 6 W, P < 0.05). After “left shifting” the ramp V̇o2 by the MRT, the work rate at LT was constant regardless of the ramp slope (~150 W, P > 0.05). The work rate at MMSS was 215 ± 55 W and was similar and highly correlated with the work rate at RCP during the 5 W/min ramp ( P > 0.05, r = 0.99; Lin’s concordance coefficient = 0.99; bias = −3 W; root mean square error = 6 W). Findings showed that the dynamics of V̇o2 (i.e., G) during ramp exercise explain the apparent dichotomy existing with constant-work-rate exercise. When these dynamics are appropriately “resolved”, LT is constant regardless of the ramp slope of choice, and RCP and MMSS display minimal variations between each other. NEW & NOTEWORTHY This study demonstrates that the dynamics of V̇o2 during ramp-incremental exercise are dependent on the characteristics of the increments in work rate, such that during slow-incrementing ramp protocols the magnitude of the dissociation between ramp V̇o2 and constant V̇o2 at a given work rate is reduced. Accurately accounting for these dynamics ensures correct characterizations of the V̇o2 kinetics at ramp onset and allows appropriate comparisons between ramp and constant-work-rate exercise-derived indexes of exercise intensity.


2019 ◽  
Vol 317 (6) ◽  
pp. R840-R851 ◽  
Author(s):  
Danilo Iannetta ◽  
Louis Passfield ◽  
Ahmad Qahtani ◽  
Martin J. MacInnis ◽  
Juan M. Murias

It is typically assumed that in the context of double-leg cycling, dominant (DOMLEG) and nondominant legs (NDOMLEG) have similar aerobic capacity and both contribute equally to the whole body physiological responses. However, there is a paucity of studies that have systematically investigated maximal and submaximal aerobic performance and characterized the profiles of local muscle deoxygenation in relation to leg dominance. Using counterweighted single-leg cycling, this study explored whether peak O2 consumption (V̇o2peak), maximal lactate steady-state (MLSSp), and profiles of local deoxygenation [HHb] would be different in the DOMLEG compared with the NDOMLEG. Twelve participants performed a series of double-leg and counterweighted single-leg DOMLEG and NDOMLEG ramp-exercise tests and 30-min constant-load trials. V̇o2peak was greater in the DOMLEG than in the NDOMLEG (2.87 ± 0.42 vs. 2.70 ± 0.39 L/min, P < 0.05). The difference in V̇o2peak persisted even after accounting for lean mass ( P < 0.05). Similarly, MLSSp was greater in the DOMLEG than in the NDOMLEG (118 ± 31 vs. 109 ± 31 W; P < 0.05). Furthermore, the amplitude of the [HHb] signal during ramp exercise was larger in the DOMLEG than in the NDOMLEG during both double-leg (26.0 ± 8.4 vs. 20.2 ± 8.8 µM, P < 0.05) and counterweighted single-leg cycling (18.5 ± 7.9 vs. 14.9 ± 7.5 µM, P < 0.05). Additionally, the amplitudes of the [HHb] signal were highly to moderately correlated with the mode-specific V̇o2peak values (ranging from 0.91 to 0.54). These findings showed in a group of young men that maximal and submaximal aerobic capacities were greater in the DOMLEG than in the NDOMLEG and that superior peripheral adaptations of the DOMLEG may underpin these differences.


2016 ◽  
Vol 116 (11-12) ◽  
pp. 2345-2355 ◽  
Author(s):  
Kristof Vandekerckhove ◽  
Ilse Coomans ◽  
Annelies Moerman ◽  
Daniel De Wolf ◽  
Jan Boone

Sign in / Sign up

Export Citation Format

Share Document