scholarly journals Nontrivial solutions for the choquard equation with indefinite linear part and upper critical exponent

2020 ◽  
Vol 19 (3) ◽  
pp. 1563-1579
Author(s):  
Ting Guo ◽  
◽  
Xianhua Tang ◽  
Qi Zhang ◽  
Zu Gao
2018 ◽  
Vol 20 (04) ◽  
pp. 1750037 ◽  
Author(s):  
Fashun Gao ◽  
Minbo Yang

In this paper, we are concerned with the following nonlinear Choquard equation [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text]. If [Formula: see text] lies in a gap of the spectrum of [Formula: see text] and [Formula: see text] is of critical growth due to the Hardy–Littlewood–Sobolev inequality, we obtain the existence of nontrivial solutions by variational methods. The main result here extends and complements the earlier theorems obtained in [N. Ackermann, On a periodic Schrödinger equation with nonlocal superlinear part, Math. Z. 248 (2004) 423–443; B. Buffoni, L. Jeanjean and C. A. Stuart, Existence of a nontrivial solution to a strongly indefinite semilinear equation, Proc. Amer. Math. Soc. 119 (1993) 179–186; V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Math. Soc. 367 (2015) 6557–6579].


2020 ◽  
Vol 10 (1) ◽  
pp. 732-774
Author(s):  
Zhipeng Yang ◽  
Fukun Zhao

Abstract In this paper, we study the singularly perturbed fractional Choquard equation $$\begin{equation*}\varepsilon^{2s}(-{\it\Delta})^su+V(x)u=\varepsilon^{\mu-3}(\int\limits_{\mathbb{R}^3}\frac{|u(y)|^{2^*_{\mu,s}}+F(u(y))}{|x-y|^\mu}dy)(|u|^{2^*_{\mu,s}-2}u+\frac{1}{2^*_{\mu,s}}f(u)) \, \text{in}\, \mathbb{R}^3, \end{equation*}$$ where ε > 0 is a small parameter, (−△)s denotes the fractional Laplacian of order s ∈ (0, 1), 0 < μ < 3, $2_{\mu ,s}^{\star }=\frac{6-\mu }{3-2s}$is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator. F is the primitive of f which is a continuous subcritical term. Under a local condition imposed on the potential V, we investigate the relation between the number of positive solutions and the topology of the set where the potential attains its minimum values. In the proofs we apply variational methods, penalization techniques and Ljusternik-Schnirelmann theory.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hongsen Fan ◽  
Zhiying Deng

AbstractIn this paper, we discuss a class of Kirchhof-type elliptic boundary value problem with Sobolev–Hardy critical exponent and apply the variational method to obtain one positive solution and two nontrivial solutions to the problem under certain conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Juan Jiang

We consider the perturbed nonlinear elliptic system-ε2Δu+V(x)u=K(x)|u|2*-2u+Hu(u,v),  x∈ℝN,-ε2Δv+V(x)v=K(x)|v|2*-2v+Hv(u,v),  x∈ℝN, whereN≥3,2*=2N/(N-2)is the Sobolev critical exponent. Under proper conditions onV,H, andK, the existence result and multiplicity of the system are obtained by using variational method providedεis small enough.


2010 ◽  
Vol 217 (6) ◽  
pp. 2666-2675 ◽  
Author(s):  
Leszek Gasiński ◽  
Nikolaos S. Papageorgiou

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang ◽  
Qiongfen Zhang

AbstractIn this paper, we focus on the existence of solutions for the Choquard equation $$\begin{aligned} \textstyle\begin{cases} {-}\Delta {u}+V(x)u=(I_{\alpha }* \vert u \vert ^{\frac{\alpha }{N}+1}) \vert u \vert ^{ \frac{\alpha }{N}-1}u+\lambda \vert u \vert ^{p-2}u,\quad x\in \mathbb{R}^{N}; \\ u\in H^{1}(\mathbb{R}^{N}), \end{cases}\displaystyle \end{aligned}$$ { − Δ u + V ( x ) u = ( I α ∗ | u | α N + 1 ) | u | α N − 1 u + λ | u | p − 2 u , x ∈ R N ; u ∈ H 1 ( R N ) , where $\lambda >0$ λ > 0 is a parameter, $\alpha \in (0,N)$ α ∈ ( 0 , N ) , $N\ge 3$ N ≥ 3 , $I_{\alpha }: \mathbb{R}^{N}\to \mathbb{R}$ I α : R N → R is the Riesz potential. As usual, $\alpha /N+1$ α / N + 1 is the lower critical exponent in the Hardy–Littlewood–Sobolev inequality. Under some weak assumptions, by using minimax methods and Pohožaev identity, we prove that this problem admits a ground state solution if $\lambda >\lambda _{*}$ λ > λ ∗ for some given number $\lambda _{*}$ λ ∗ in three cases: (i) $2< p<\frac{4}{N}+2$ 2 < p < 4 N + 2 , (ii) $p=\frac{4}{N}+2$ p = 4 N + 2 , and (iii) $\frac{4}{N}+2< p<2^{*}$ 4 N + 2 < p < 2 ∗ . Our result improves the previous related ones in the literature.


Sign in / Sign up

Export Citation Format

Share Document