scholarly journals Classification of nonnegative solutions to an equation involving the Laplacian of arbitrary order

2019 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Phuong Le ◽  
2018 ◽  
Vol 149 (04) ◽  
pp. 979-994 ◽  
Author(s):  
Daomin Cao ◽  
Wei Dai

AbstractIn this paper, we are concerned with the following bi-harmonic equation with Hartree type nonlinearity $$\Delta ^2u = \left( {\displaystyle{1 \over { \vert x \vert ^8}}* \vert u \vert ^2} \right)u^\gamma ,\quad x\in {\open R}^d,$$where 0 < γ ⩽ 1 and d ⩾ 9. By applying the method of moving planes, we prove that nonnegative classical solutions u to (𝒫γ) are radially symmetric about some point x0 ∈ ℝd and derive the explicit form for u in the Ḣ2 critical case γ = 1. We also prove the non-existence of nontrivial nonnegative classical solutions in the subcritical cases 0 < γ < 1. As a consequence, we also derive the best constants and extremal functions in the corresponding Hardy-Littlewood-Sobolev inequalities.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yunting Li ◽  
Yaqiong Liu ◽  
Yunhui Yi

AbstractThis paper is mainly concerned with the following semi-linear system involving the fractional Laplacian: $$ \textstyle\begin{cases} (-\Delta )^{\frac{\alpha }{2}}u(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast v^{p_{1}} )v^{p_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ (-\Delta )^{\frac{\alpha }{2}}v(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast u^{q_{1}} )u^{q_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ u(x)\geq 0,\quad\quad v(x)\geq 0, \quad x\in \mathbb{R}^{n}, \end{cases} $$ { ( − Δ ) α 2 u ( x ) = ( 1 | ⋅ | σ ∗ v p 1 ) v p 2 ( x ) , x ∈ R n , ( − Δ ) α 2 v ( x ) = ( 1 | ⋅ | σ ∗ u q 1 ) u q 2 ( x ) , x ∈ R n , u ( x ) ≥ 0 , v ( x ) ≥ 0 , x ∈ R n , where $0<\alpha \leq 2$ 0 < α ≤ 2 , $n\geq 2$ n ≥ 2 , $0<\sigma <n$ 0 < σ < n , and $0< p_{1}, q_{1}\leq \frac{2n-\sigma }{n-\alpha }$ 0 < p 1 , q 1 ≤ 2 n − σ n − α , $0< p_{2}, q_{2}\leq \frac{n+\alpha -\sigma }{n-\alpha }$ 0 < p 2 , q 2 ≤ n + α − σ n − α . Applying a variant (for nonlocal nonlinearity) of the direct method of moving spheres for fractional Laplacians, which was developed by W. Chen, Y. Li, and R. Zhang (J. Funct. Anal. 272(10):4131–4157, 2017), we derive the explicit forms for positive solution $(u,v)$ ( u , v ) in the critical case and nonexistence of positive solutions in the subcritical cases.


2012 ◽  
Vol 14 (02) ◽  
pp. 1250013 ◽  
Author(s):  
VITALI LISKEVICH ◽  
ANDREY SHISHKOV ◽  
ZEEV SOBOL

We study the existence and nonexistence of singular solutions to the equation [Formula: see text], p > 1, in ℝN× [0, ∞), N ≥ 3, with a singularity at the point (0, 0), that is, nonnegative solutions satisfying u(x, 0) = 0 for x ≠ 0, assuming that α > -2 and [Formula: see text]. The problem is transferred to the one for a weighted Laplace–Beltrami operator with a nonlinear absorption, absorbing the Hardy potential in the weight. A classification of a singular solution to the weighted problem either as a source solution with a multiple of the Dirac mass as initial datum, or as a unique very singular solution, leads to a complete classification of singular solutions to the original problem, which exist if and only if [Formula: see text].


2021 ◽  
Vol 6 (12) ◽  
pp. 13665-13688
Author(s):  
Yaqiong Liu ◽  
◽  
Yunting Li ◽  
Qiuping Liao ◽  
Yunhui Yi

<abstract><p>In this paper, we are concerned with the fractional Schrödinger-Hatree-Maxwell type system. We derive the forms of the nonnegative solution and classify nonlinearities by appling a variant (for nonlocal nonlinearity) of the direct moving spheres method for fractional Laplacians. The main ingredients are the variants (for nonlocal nonlinearity) of the maximum principles, i.e., <italic>narrow region principle</italic> (Theorem 2.3).</p></abstract>


Author(s):  
Andrei P. Shilin

The paper provides an exact analytical solution to a hypersingular inregro-differential equation of arbitrary order. The equation is defined on a closed curve in the complex plane. A characteristic feature of the equation is that if is written using determinants. From the view of the traditional classification of the equations, it should be classified as linear equations with vatiable coefficients of a special form. The method of analytical continuation id applied. The equation is reduced to a boundary value problem of linear conjugation for analytic functions with some additional conditions. If this problem is solvable, if is required to solve two more linear differential equations in the class of analytic functions. The conditions of solvability are indicated explicitly. When these conditions are met, the solution can also be written explicitly. An example is given.


Sign in / Sign up

Export Citation Format

Share Document