scholarly journals Classification of nonnegative solutions to static Schrödinger–Hartree–Maxwell system involving the fractional Laplacian

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yunting Li ◽  
Yaqiong Liu ◽  
Yunhui Yi

AbstractThis paper is mainly concerned with the following semi-linear system involving the fractional Laplacian: $$ \textstyle\begin{cases} (-\Delta )^{\frac{\alpha }{2}}u(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast v^{p_{1}} )v^{p_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ (-\Delta )^{\frac{\alpha }{2}}v(x)= (\frac{1}{ \vert \cdot \vert ^{\sigma }} \ast u^{q_{1}} )u^{q_{2}}(x), \quad x\in \mathbb{R}^{n}, \\ u(x)\geq 0,\quad\quad v(x)\geq 0, \quad x\in \mathbb{R}^{n}, \end{cases} $$ { ( − Δ ) α 2 u ( x ) = ( 1 | ⋅ | σ ∗ v p 1 ) v p 2 ( x ) , x ∈ R n , ( − Δ ) α 2 v ( x ) = ( 1 | ⋅ | σ ∗ u q 1 ) u q 2 ( x ) , x ∈ R n , u ( x ) ≥ 0 , v ( x ) ≥ 0 , x ∈ R n , where $0<\alpha \leq 2$ 0 < α ≤ 2 , $n\geq 2$ n ≥ 2 , $0<\sigma <n$ 0 < σ < n , and $0< p_{1}, q_{1}\leq \frac{2n-\sigma }{n-\alpha }$ 0 < p 1 , q 1 ≤ 2 n − σ n − α , $0< p_{2}, q_{2}\leq \frac{n+\alpha -\sigma }{n-\alpha }$ 0 < p 2 , q 2 ≤ n + α − σ n − α . Applying a variant (for nonlocal nonlinearity) of the direct method of moving spheres for fractional Laplacians, which was developed by W. Chen, Y. Li, and R. Zhang (J. Funct. Anal. 272(10):4131–4157, 2017), we derive the explicit forms for positive solution $(u,v)$ ( u , v ) in the critical case and nonexistence of positive solutions in the subcritical cases.

2021 ◽  
Vol 6 (12) ◽  
pp. 13665-13688
Author(s):  
Yaqiong Liu ◽  
◽  
Yunting Li ◽  
Qiuping Liao ◽  
Yunhui Yi

<abstract><p>In this paper, we are concerned with the fractional Schrödinger-Hatree-Maxwell type system. We derive the forms of the nonnegative solution and classify nonlinearities by appling a variant (for nonlocal nonlinearity) of the direct moving spheres method for fractional Laplacians. The main ingredients are the variants (for nonlocal nonlinearity) of the maximum principles, i.e., <italic>narrow region principle</italic> (Theorem 2.3).</p></abstract>


2018 ◽  
Vol 149 (04) ◽  
pp. 979-994 ◽  
Author(s):  
Daomin Cao ◽  
Wei Dai

AbstractIn this paper, we are concerned with the following bi-harmonic equation with Hartree type nonlinearity $$\Delta ^2u = \left( {\displaystyle{1 \over { \vert x \vert ^8}}* \vert u \vert ^2} \right)u^\gamma ,\quad x\in {\open R}^d,$$where 0 &lt; γ ⩽ 1 and d ⩾ 9. By applying the method of moving planes, we prove that nonnegative classical solutions u to (𝒫γ) are radially symmetric about some point x0 ∈ ℝd and derive the explicit form for u in the Ḣ2 critical case γ = 1. We also prove the non-existence of nontrivial nonnegative classical solutions in the subcritical cases 0 &lt; γ &lt; 1. As a consequence, we also derive the best constants and extremal functions in the corresponding Hardy-Littlewood-Sobolev inequalities.


2019 ◽  
pp. 1-26
Author(s):  
Bo Cui ◽  
Chunlan Jiang ◽  
Liangqing Li

An ATAI (or ATAF, respectively) algebra, introduced in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (or in [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], respectively) is an inductive limit [Formula: see text], where each [Formula: see text] is a simple separable nuclear TAI (or TAF) C*-algebra with UCT property. In [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404], the second author classified all ATAI algebras by an invariant consisting orderd total [Formula: see text]-theory and tracial state spaces of cut down algebras under an extra restriction that all element in [Formula: see text] are torsion. In this paper, we remove this restriction, and obtained the classification for all ATAI algebras with the Hausdorffized algebraic [Formula: see text]-group as an addition to the invariant used in [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404]. The theorem is proved by reducing the class to the classification theorem of [Formula: see text] algebras with ideal property which is done in [G. Gong, C. Jiang and L. Li, A classification of inductive limit C*-algebras with ideal property, preprint (2016), arXiv:1607.07681]. Our theorem generalizes the main theorem of [X. C. Fang, The classification of certain non-simple C*-algebras of tracial rank zero, J. Funct. Anal. 256 (2009) 3861–3891], [C. Jiang, A classification of non simple C*-algebras of tracial rank one: Inductive limit of finite direct sums of simple TAI C*-algebras, J. Topol. Anal. 3 (2011) 385–404] (see Corollary 4.3).


2010 ◽  
Vol 2 (2) ◽  
Author(s):  
David H. Myszka ◽  
Andrew P. Murray

In synthesizing a planar 4R linkage that can achieve four positions, the fixed pivots are constrained to lie on a center-point curve. It is widely known that the curve can be parametrized by a 4R compatibility linkage. In this paper, a slider-crank is presented as a suitable compatibility linkage to generate the center-point curve. Furthermore, the center-point curve can be parametrized by the crank angle of a slider-crank linkage. It is observed that the center-point curve is dependent on the classification of the slider-crank. Lastly, a direct method to calculate the focus of the center-point curve is revealed.


2014 ◽  
Vol 16 (5) ◽  
pp. 1178-1193 ◽  
Author(s):  
Orazio Giustolisi ◽  
Naser Moosavian

Steady-state Water Distribution Network models compute pipe flows and nodal heads for assumed nodal demands, pipe hydraulic resistances, etc. The nonlinear mathematical problem is based on energy and mass conservation laws which is solved by using global linearization techniques, such as global gradient algorithm (GGA). The matrix of coefficients of the linear system inside GGA belongs to the class of sparse, symmetric and positive definite. Therefore a fast solver for the linear system is important in order to achieve the computational efficiency, especially when multiple runs are required. This work aims at testing three main strategies for the solution of linear systems inside GGA. The tests are performed on eight real networks by sampling nodal demands, considering the pressure-driven and demand-driven modelling to evaluate the robustness of solvers. The results show that there exists a robust specialized direct method which is superior to all the other alternatives. Furthermore, it is found that the number of times the linear system is solved inside the GGA does not depend on the specific solver, if a small regularization to the linear problem is applied, and that pressure-driven modelling requires a greater number which depends on the size and topology of the network and not only on the level of pressure deficiency.


1960 ◽  
Vol 82 (4) ◽  
pp. 382-386
Author(s):  
M. Zaid ◽  
I. S. Tolins

In the design of high precision, rotating equipment such as air bearings, gyroscopes, etc., it has become possible to reduce the frictional torques to “almost zero” values. The measurement and classification of the sources of these minute torques during rotation is exceedingly difficult, but very important for correct application and further design improvement. It is the purpose of this paper to present two techniques for the measurement and discrimination of the torques, and an example showing the accuracy of these techniques. Although these methods were designed specifically for the measurements of low torques, they work equally well for any magnitude and as such present a good evaluation technique. A comparison made with the values obtained by one of the better “direct” methods indicates that the direct method is inadequate.


2021 ◽  
Vol 11 (1) ◽  
pp. 385-416
Author(s):  
Jun Wang

Abstract In the present paperwe study the existence of nontrivial solutions of a class of static coupled nonlinear fractional Hartree type system. First, we use the direct moving plane methods to establish the maximum principle(Decay at infinity and Narrow region principle) and prove the symmetry and nonexistence of positive solution of this nonlocal system. Second, we make complete classification of positive solutions of the system in the critical case when some parameters are equal. Finally, we prove the existence of multiple nontrivial solutions in the critical case according to the different parameters ranges by using variational methods. To accomplish our results we establish the maximum principle for the fractional nonlocal system.


Author(s):  
David H. Myszka ◽  
Andrew P. Murray

In synthesizing a planar 4R linkage that can achieve four positions, the fixed pivots are constrained to lie on a center-point curve. It is widely known that the curve can be parameterized by a 4R compatibility linkage. In this paper, a slider crank is presented as a suitable compatibility linkage to generate the centerpoint curve. Further, the center-point curve can be parametrized by the crank angle of a slider crank linkage. It is observed that the center-point curve is dependent on the classification of the slider crank. Lastly, a direct method to calculate the focus of the center-point curve is revealed.


Sign in / Sign up

Export Citation Format

Share Document