scholarly journals Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays

2017 ◽  
Vol 22 (6) ◽  
pp. 2365-2387 ◽  
Author(s):  
Hui Miao ◽  
◽  
Zhidong Teng ◽  
Chengjun Kang ◽  
2018 ◽  
Vol 28 (09) ◽  
pp. 1850109 ◽  
Author(s):  
Xiangming Zhang ◽  
Zhihua Liu

We make a mathematical analysis of an age structured HIV infection model with both virus-to-cell and cell-to-cell transmissions to understand the dynamical behavior of HIV infection in vivo. In the model, we consider the proliferation of uninfected CD[Formula: see text] T cells by a logistic function and the infected CD[Formula: see text] T cells are assumed to have an infection-age structure. Our main results concern the Hopf bifurcation of the model by using the theory of integrated semigroup and the Hopf bifurcation theory for semilinear equations with nondense domain. Bifurcation analysis indicates that there exist some parameter values such that this HIV infection model has a nontrivial periodic solution which bifurcates from the positive equilibrium. The numerical simulations are also carried out.


2013 ◽  
Vol 641-642 ◽  
pp. 808-811
Author(s):  
Xiao Zhang ◽  
Dong Wei Huang ◽  
Yong Feng Guo

In this paper, a class of HIV infection model with delayed immune response has been studied. We analyze the global asymptotic stability of the viral free equilibrium, and the stability and Hopf bifurcation of the infected equilibrium have been studied. Numerical simulations are carried out to explain the results of the analysis, and the change of the immune response of CTLs infects stability of system. These results can explain the complexity of the immune state of AIDs.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhimin Chen ◽  
Xiuxiang Liu ◽  
Liling Zeng

Abstract In this paper, a human immunodeficiency virus (HIV) infection model that includes a protease inhibitor (PI), two intracellular delays, and a general incidence function is derived from biologically natural assumptions. The global dynamical behavior of the model in terms of the basic reproduction number $\mathcal{R}_{0}$ R 0 is investigated by the methods of Lyapunov functional and limiting system. The infection-free equilibrium is globally asymptotically stable if $\mathcal{R}_{0}\leq 1$ R 0 ≤ 1 . If $\mathcal{R}_{0}>1$ R 0 > 1 , then the positive equilibrium is globally asymptotically stable. Finally, numerical simulations are performed to illustrate the main results and to analyze thre effects of time delays and the efficacy of the PI on $\mathcal{R}_{0}$ R 0 .


Sign in / Sign up

Export Citation Format

Share Document