scholarly journals Properties of stability and Hopf bifurcation for a HIV infection model with time delay

2010 ◽  
Vol 34 (6) ◽  
pp. 1511-1523 ◽  
Author(s):  
Xinyu Song ◽  
Xueyong Zhou ◽  
Xiang Zhao
2018 ◽  
Vol 28 (09) ◽  
pp. 1850109 ◽  
Author(s):  
Xiangming Zhang ◽  
Zhihua Liu

We make a mathematical analysis of an age structured HIV infection model with both virus-to-cell and cell-to-cell transmissions to understand the dynamical behavior of HIV infection in vivo. In the model, we consider the proliferation of uninfected CD[Formula: see text] T cells by a logistic function and the infected CD[Formula: see text] T cells are assumed to have an infection-age structure. Our main results concern the Hopf bifurcation of the model by using the theory of integrated semigroup and the Hopf bifurcation theory for semilinear equations with nondense domain. Bifurcation analysis indicates that there exist some parameter values such that this HIV infection model has a nontrivial periodic solution which bifurcates from the positive equilibrium. The numerical simulations are also carried out.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mehdi Maziane ◽  
Khalid Hattaf ◽  
Noura Yousfi

We propose and analyse an human immunodeficiency virus (HIV) infection model with spatial diffusion and delay in the immune response activation. In the proposed model, the immune response is presented by the cytotoxic T lymphocytes (CTL) cells. We first prove that the model is well-posed by showing the global existence, positivity, and boundedness of solutions. The model has three equilibria, namely, the free-infection equilibrium, the immune-free infection equilibrium, and the chronic infection equilibrium. The global stability of the first two equilibria is fully characterized by two threshold parameters that are the basic reproduction number R0 and the CTL immune response reproduction number R1. The stability of the last equilibrium depends on R0 and R1 as well as time delay τ in the CTL activation. We prove that the chronic infection equilibrium is locally asymptotically stable when the time delay is sufficiently small, while it loses its stability and a Hopf bifurcation occurs when τ passes through a certain critical value.


2013 ◽  
Vol 641-642 ◽  
pp. 808-811
Author(s):  
Xiao Zhang ◽  
Dong Wei Huang ◽  
Yong Feng Guo

In this paper, a class of HIV infection model with delayed immune response has been studied. We analyze the global asymptotic stability of the viral free equilibrium, and the stability and Hopf bifurcation of the infected equilibrium have been studied. Numerical simulations are carried out to explain the results of the analysis, and the change of the immune response of CTLs infects stability of system. These results can explain the complexity of the immune state of AIDs.


Sign in / Sign up

Export Citation Format

Share Document