scholarly journals Bifurcation analysis of the three-dimensional Hénon map

2017 ◽  
Vol 10 (3) ◽  
pp. 625-645 ◽  
Author(s):  
Ming Zhao ◽  
◽  
Cuiping Li ◽  
Jinliang Wang ◽  
Zhaosheng Feng ◽  
...  
2014 ◽  
Vol 247 ◽  
pp. 487-493 ◽  
Author(s):  
Shao-Fu Wang ◽  
Xiao-Cong Li ◽  
Fei Xia ◽  
Zhan-Shan Xie

2005 ◽  
Vol 15 (11) ◽  
pp. 3493-3508 ◽  
Author(s):  
S. V. GONCHENKO ◽  
I. I. OVSYANNIKOV ◽  
C. SIMÓ ◽  
D. TURAEV

We discuss a rather new phenomenon in chaotic dynamics connected with the fact that some three-dimensional diffeomorphisms can possess wild Lorenz-type strange attractors. These attractors persist for open domains in the parameter space. In particular, we report on the existence of such domains for a three-dimensional Hénon map (a simple quadratic map with a constant Jacobian which occurs in a natural way in unfoldings of several types of homoclinic bifurcations). Among other observations, we have evidence that there are different types of Lorenz-like attractor domains in the parameter space of the 3D Hénon map. In all cases the maximal Lyapunov exponent, Λ1, is positive. Concerning the next Lyapunov exponent, Λ2, there are open domains where it is definitely positive, others where it is definitely negative and, finally, domains where it cannot be distinguished numerically from zero (i.e. |Λ2| < ρ, where ρ is some tolerance ranging between 10-5 and 10-6). Furthermore, several other types of interesting attractors have been found in this family of 3D Hénon maps.


2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Jingjing Zheng ◽  
Ziwei Wang ◽  
You Li ◽  
Jinliang Wang

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Lotfi Jouini ◽  
Adel Ouannas ◽  
Amina-Aicha Khennaoui ◽  
Xiong Wang ◽  
Giuseppe Grassi ◽  
...  

2000 ◽  
Vol 5 (3) ◽  
pp. 203-221 ◽  
Author(s):  
Erik Mosekilde ◽  
Zhanybai T. Zhusubaliyev ◽  
Vadim N. Rudakov ◽  
Evgeniy A. Soukhterin

Division of the parameter plane for the two-dimensional Hénon mapping into domains of periodic and chaotic oscillations is studied numerically and analytically. Regularities in the occurrence of different motions and transitions are analyzed. It is shown that there are domains in the plane of parameters, where non-uniqueness of motions exists. This may lead to abrupt changes of the character of the dynamics under variation in the parameters, that is, to a sudden transition from one stable cycle to another or to chaotization of the oscillations.


2011 ◽  
Vol 28 (1) ◽  
pp. 010203 ◽  
Author(s):  
Gabriela A Casas ◽  
Paulo C Rech

2020 ◽  
Vol 30 (11) ◽  
pp. 2050217
Author(s):  
Amina-Aicha Khennaoui ◽  
Adel Ouannas ◽  
Zaid Odibat ◽  
Viet-Thanh Pham ◽  
Giuseppe Grassi

A three-dimensional (3D) Hénon map of fractional order is proposed in this paper. The dynamics of the suggested map are numerically illustrated for different fractional orders using phase plots and bifurcation diagrams. Lorenz-like attractors for the considered map are realized. Then, using the linear fractional-order systems stability criterion, a controller is proposed to globally stabilize the fractional-order Hénon map. Furthermore, synchronization control scheme has been designed to exhibit a synchronization behavior between a given 2D fractional-order chaotic map and the 3D fractional-order Hénon map. Numerical simulations are also performed to verify the main results of the study.


1993 ◽  
Vol 03 (02) ◽  
pp. 399-404 ◽  
Author(s):  
T. SÜNNER ◽  
H. SAUERMANN

Nonlinear self-excited oscillations are usually investigated for two-dimensional models. We extend the simplest and best known of these models, the van der Pol oscillator, to a three-dimensional one and study its dynamical behaviour by methods of bifurcation analysis. We find cusps and other local codimension 2 bifurcations. A homoclinic (i.e. global) bifurcation plays an important role in the bifurcation diagram. Finally it is demonstrated that chaos sets in. Thus the system belongs to the few three-dimensional autonomous ones modelling physical situations which lead to chaotic behavior.


Sign in / Sign up

Export Citation Format

Share Document