scholarly journals Uniqueness and exponential instability in a new two-temperature thermoelastic theory

2021 ◽  
Vol 6 (6) ◽  
pp. 5440-5451
Author(s):  
José R. Fernández ◽  
◽  
Ramón Quintanilla ◽  

Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1711
Author(s):  
Faris Alzahrani ◽  
Ibrahim Abbas

In this work, the new model of photothermal and elastic waves, with and without energy dissipation, under a hyperbolic two-temperature model, is used to compute the displacement, carrier density, thermodynamic temperature, conductive temperature and stress in a semiconductor medium. The medium is considered in the presence of the coupling of plasma and thermoelastic waves. To get the complete analytical expressions of the main physical fields, Laplace transforms and the eigenvalue scheme are used. The outcomes are presented graphically to display the differences between the classical two-temperature theory and the new hyperbolic two-temperature theory, with and without energy dissipation. Based on the numerical results, the hyperbolic two-temperature thermoelastic theory offers a finite speed of mechanical waves and propagation of thermal waves.



2018 ◽  
Author(s):  
Meng An ◽  
Qichen Song ◽  
Xiaoxiang Yu ◽  
Han Meng ◽  
Dengke Ma ◽  
...  


1992 ◽  
Author(s):  
Lou A. Stephenson ◽  
Mark D. Quigley ◽  
Laurie A. Blanchard ◽  
Deborah A. Toyota ◽  
Margaret A. Kolka




2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hamdy M. Youssef ◽  
Najat A. Alghamdi

Abstract This work is dealing with the temperature reaction and response of skin tissue due to constant surface heat flux. The exact analytical solution has been obtained for the two-temperature dual-phase-lag (TTDPL) of bioheat transfer. We assumed that the skin tissue is subjected to a constant heat flux on the bounding plane of the skin surface. The separation of variables for the governing equations as a finite domain is employed. The transition temperature responses have been obtained and discussed. The results represent that the dual-phase-lag time parameter, heat flux value, and two-temperature parameter have significant effects on the dynamical and conductive temperature increment of the skin tissue. The Two-temperature dual-phase-lag (TTDPL) bioheat transfer model is a successful model to describe the behavior of the thermal wave through the skin tissue.



Sign in / Sign up

Export Citation Format

Share Document