conductive temperature
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 4)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Ibrahim Abbas ◽  
Aatef Hobiny

Abstract This article is interested in the study of the carrier density, the redial displacement, the conductive temperature, thermodynamic temperature and the stresses in a semi-conductor material containing a spherical hole. This investigation deals with the photo-thermo-elastic interactions in a semi-conductor medium in the context of the new hyperbolic two-temperatures model with one relaxation time. The Laplace transform technique are used to obtain the problem analytical solution by the eigenvalues methods and the inversions of the Laplace transform were performed numerically. Numerical results for semi-conductor materials are shown graphically and discussed.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1711
Author(s):  
Faris Alzahrani ◽  
Ibrahim Abbas

In this work, the new model of photothermal and elastic waves, with and without energy dissipation, under a hyperbolic two-temperature model, is used to compute the displacement, carrier density, thermodynamic temperature, conductive temperature and stress in a semiconductor medium. The medium is considered in the presence of the coupling of plasma and thermoelastic waves. To get the complete analytical expressions of the main physical fields, Laplace transforms and the eigenvalue scheme are used. The outcomes are presented graphically to display the differences between the classical two-temperature theory and the new hyperbolic two-temperature theory, with and without energy dissipation. Based on the numerical results, the hyperbolic two-temperature thermoelastic theory offers a finite speed of mechanical waves and propagation of thermal waves.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 922
Author(s):  
Hamdy M. Youssef ◽  
Najat. A. Alghamdi

The use of lasers and thermal transfers on the skin is fundamental in medical and clinical treatments. In this paper, we constructed and applied bioheat transfer equations in the context of a two-temperature heat conduction model in order to discuss the three-dimensional variation in the temperature of laser-irradiated biological tissue. The amount of thermal damage in the tissue was calculated using the Arrhenius integral. Mathematical difficulties were encountered in applying the equations. As a result, the Laplace and Fourier transform technique was employed, and solutions for the conductive temperature and dynamical temperature were obtained in the Fourier transform domain.


2020 ◽  
Vol 8 (1) ◽  
pp. 91-104
Author(s):  
Mohsin Islam ◽  

This paper deals with the determination of thermoelastic stresses, strain and conductive temperature in a spherically symmetric spherical shell in the context of the fractional order two temperature generalized thermoelasticity theory (2TT). The two temperature three-phase-lag thermoelastic model (2T3P) and two temperature Green Naghdi model III (2TGN-III) are combined into a unified formulation. There is no temperature at the outer boundary and thermal load is applied at the inner boundary. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace- transform domain which is then solved by the state-space approach. The numerical inversion of the transform is carried out using Fourier-series expansion techniques. The physical quantities have been computed numerically and presented graphically. The effect of the fractional order parameter on the solutions has been studied and the comparisons among different thermoelastic models are made.


2017 ◽  
Vol 14 (03) ◽  
pp. 1750030 ◽  
Author(s):  
Abhik Sur ◽  
M. Kanoria

The present paper deals with the problem of thermoelastic interactions in a homogeneous, isotropic three-dimensional medium whose surface suffers a time dependent thermal loading. The problem is treated on the basis of three-phase-lag model and dual-phase-lag model with two temperatures. The medium is assumed to be unstressed initially and has uniform temperature. Normal mode analysis technique is employed onto the non-dimensional field equations to derive the exact expressions for displacement component, conductive temperature, thermodynamic temperature, stress and strain. The problem is illustrated by computing the numerical values of the field variables for a copper material. Finally, all the physical fields are represented graphically to analyze the difference between the two models. The effect of the two temperature parameter is also discussed.


2015 ◽  
Vol 11 (4) ◽  
pp. 544-557 ◽  
Author(s):  
Mohamed I. Othman ◽  
W. M. Hasona ◽  
Nehal T. Mansour

Purpose – The purpose of this paper is to introduce the Lord-Shulman (L-S), Green-Naghdi of type III (G-N III) and three phase lag (3PHL) theories to study the effect of a magnetic field on generalized thermoelastic medium with two temperature. Design/methodology/approach – The problem has been solved numerically by using the normal mode analysis. Findings – The problem is used to obtain the analytical expressions of the displacement components, force stress, thermodynamic temperature and conductive temperature. The numerical results are given and presented graphically thermal force is applied. Comparisons are made with the results predicted by 3PHL, G-N III and L-S in the presence and absence of magnetic field as well as two temperature. Originality/value – Generalized thermoelastic medium.


2015 ◽  
Vol 31 (6) ◽  
pp. 639-651 ◽  
Author(s):  
S. Deswal ◽  
N. Hooda

ABSTRACTThe present paper is concerned with an in-depth study of the effects of rotation, two-temperature parameter and voids on the magneto-thermoelastic interactions in a homogeneous, isotropic, generalized half-space with gravity field. The formulation is applied within the frame-work of two-temperature generalized thermoelasticity based on the hyperbolic heat conduction model with one relaxation time. Using normal mode analysis technique for the physical variables appearing in the governing equations, we get the analytical expressions for displacement components, stress, thermodynamic temperature, conductive temperature and change in volume fraction field. The general solution obtained is then applied to a specific problem of an infinite half-space having isothermal boundary subjected to mechanical load. Variations of the considered variables through the vertical distance are illustrated graphically.


2015 ◽  
Vol 93 (5) ◽  
pp. 585-590 ◽  
Author(s):  
Ibrahim A. Abbas

The problem of two-temperature generalized thermoelastic thin slim strip is investigated in the context of Green and Lindsay theory. As an application of the problem, a particular type of moving heat source is considered and the problem is solved analytically by using the eigenvalue approach in the Laplace transforms domain. The displacement, conductive temperature, thermodynamic temperature, and stress are obtained. The resulting quantities are depicted graphically.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Renu Yadav ◽  
Kapil Kumar Kalkal ◽  
Sunita Deswal

The theory of generalized thermoelasticity with fractional order strain is employed to study the problem of one-dimensional disturbances in a viscoelastic solid in the presence of a moving internal heat source and subjected to a mechanical load. The problem is in the context of Green-Naghdi theory of thermoelasticity with energy dissipation. Laplace transform and state space techniques are used to obtain the general solution for a set of boundary conditions. To tackle the expression of heat source, Fourier transform is also employed. The expressions for different field parameters such as displacement, stress, thermodynamical temperature, and conductive temperature in the physical domain are derived by the application of numerical inversion technique. The effects of fractional order strain, two-temperature parameter, viscosity, and velocity of internal heat source on the field variables are depicted graphically for copper material. Some special cases of interest have also been presented.


2014 ◽  
Vol 92 (2) ◽  
pp. 149-158 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
W.M. Hasona ◽  
Elsayed M. Abd-Elaziz

In the present paper, we introduce the dual-phase lag theory to study the effect of the rotation on a two-dimensional problem of micropolar thermoelastic isotropic medium with two temperatures. A normal mode method is proposed to analyze the problem and obtain numerical solutions for the displacement, the conductive temperature, the thermodynamic temperature, the microrotation, and the stresses. The results of the physical quantities have been obtained numerically and illustrated graphically. The results show the effect of phase lag of the heat flux τq, a phase lag of temperature gradient τθ and two-temperature parameter on all the physical quantities.


Sign in / Sign up

Export Citation Format

Share Document