scholarly journals On two sums related to the Lehmer problem over short intervals

2021 ◽  
Vol 6 (11) ◽  
pp. 11723-11732
Author(s):  
Yanbo Song ◽  

<abstract><p>In this article, we study sums related to the Lehmer problem over short intervals, and give two asymptotic formulae for them. The original Lehmer problem is to count the numbers coprime to a prime such that the number and the its number theoretical inverse are in different parities in some intervals. The numbers which satisfy these conditions are called Lehmer numbers. It prompts a series of investigations, such as the investigation of the error term in the asymptotic formula. Many scholars investigate the generalized Lehmer problems and get a lot of results. We follow the trend of these investigations and generalize the Lehmer problem.</p></abstract>

2019 ◽  
Vol 109 (3) ◽  
pp. 351-370 ◽  
Author(s):  
ALESSANDRO LANGUASCO ◽  
ALESSANDRO ZACCAGNINI

AbstractWe improve some results in our paper [A. Languasco and A. Zaccagnini, ‘Short intervals asymptotic formulae for binary problems with prime powers’, J. Théor. Nombres Bordeaux30 (2018) 609–635] about the asymptotic formulae in short intervals for the average number of representations of integers of the forms $n=p_{1}^{\ell _{1}}+p_{2}^{\ell _{2}}$ and $n=p^{\ell _{1}}+m^{\ell _{2}}$, where $\ell _{1},\ell _{2}\geq 2$ are fixed integers, $p,p_{1},p_{2}$ are prime numbers and $m$ is an integer. We also remark that the techniques here used let us prove that a suitable asymptotic formula for the average number of representations of integers $n=\sum _{i=1}^{s}p_{i}^{\ell }$, where $s$, $\ell$ are two integers such that $2\leq s\leq \ell -1$, $\ell \geq 3$ and $p_{i}$, $i=1,\ldots ,s$, are prime numbers, holds in short intervals.


2010 ◽  
Vol 53 (2) ◽  
pp. 293-299 ◽  
Author(s):  
PING XI ◽  
YUAN YI

AbstractLet n ≥ 2 be a fixed positive integer, q ≥ 3 and c, ℓ be integers with (nc, q)=1 and ℓ|n. Suppose and consist of consecutive integers which are coprime to q. We define the cardinality of a set: The main purpose of this paper is to use the estimates of Gauss sums and Kloosterman sums to study the asymptotic properties of N(, , c, n, ℓ; q), and to give an interesting asymptotic formula for it.


Author(s):  
L. Mirsky

I. Throughout this paper k1, …, k3 will denote s ≥ I fixed distinct positive integers. Some years ago Pillai (1936) found an asymptotic formula, with error term O(x/log x), for the number of positive integers n ≤ x such that n + k1, …, n + k3 are all square-free. I recently considered (Mirsky, 1947) the corresponding problem for r-free integers (i.e. integers not divisible by the rth power of any prime), and was able, in particular, to reduce the error term in Pillai's formula.Our present object is to discuss various generalizations and extensions of Pillai's problem. In all investigations below we shall be concerned with a set A of integers. This is any given, finite or infinite, set of integers greater than 1 and subject to certain additional restrictions which will be stated later. The elements of A will be called a-numbers, and the letter a will be reserved for them. A number which is not divisible by any a-number will be called A-free, and our main concern will be with the study of A-free numbers. Their additive properties have recently been investigated elsewhere (Mirsky, 1948), and some estimates obtained in that investigation will be quoted in the present paper.


2016 ◽  
Vol 103 (2) ◽  
pp. 231-249
Author(s):  
JUN FURUYA ◽  
MAKOTO MINAMIDE ◽  
YOSHIO TANIGAWA

We attempt to discuss a new circle problem. Let $\unicode[STIX]{x1D701}(s)$ denote the Riemann zeta-function $\sum _{n=1}^{\infty }n^{-s}$ ($\text{Re}\,s>1$) and $L(s,\unicode[STIX]{x1D712}_{4})$ the Dirichlet $L$-function $\sum _{n=1}^{\infty }\unicode[STIX]{x1D712}_{4}(n)n^{-s}$ ($\text{Re}\,s>1$) with the primitive Dirichlet character mod 4. We shall define an arithmetical function $R_{(1,1)}(n)$ by the coefficient of the Dirichlet series $\unicode[STIX]{x1D701}^{\prime }(s)L^{\prime }(s,\unicode[STIX]{x1D712}_{4})=\sum _{n=1}^{\infty }R_{(1,1)}(n)n^{-s}$$(\text{Re}\,s>1)$. This is an analogue of $r(n)/4=\sum _{d|n}\unicode[STIX]{x1D712}_{4}(d)$. In the circle problem, there are many researches of estimations and related topics on the error term in the asymptotic formula for $\sum _{n\leq x}r(n)$. As a new problem, we deduce a ‘truncated Voronoï formula’ for the error term in the asymptotic formula for $\sum _{n\leq x}R_{(1,1)}(n)$. As a direct application, we show the mean square for the error term in our new problem.


2000 ◽  
Vol 43 (2) ◽  
pp. 309-323 ◽  
Author(s):  
Manfred Kühleitner ◽  
Werner Georg Nowak

AbstractIn this article we consider sums S(t) = Σnψ (tf(n/t)), where ψ denotes, essentially, the fractional part minus ½ f is a C4-function with f″ non-vanishing, and summation is extended over an interval of order t. For the mean-square of S(t), an asymptotic formula is established. If f is algebraic this can be sharpened by the indication of an error term.


2020 ◽  
pp. 1-34
Author(s):  
Jiawei Lin ◽  
Greg Martin

Abstract Let $a_1$ , $a_2$ , and $a_3$ be distinct reduced residues modulo q satisfying the congruences $a_1^2 \equiv a_2^2 \equiv a_3^2 \ (\mathrm{mod}\ q)$ . We conditionally derive an asymptotic formula, with an error term that has a power savings in q, for the logarithmic density of the set of real numbers x for which $\pi (x;q,a_1)> \pi (x;q,a_2) > \pi (x;q,a_3)$ . The relationship among the $a_i$ allows us to normalize the error terms for the $\pi (x;q,a_i)$ in an atypical way that creates mutual independence among their distributions, and also allows for a proof technique that uses only elementary tools from probability.


1985 ◽  
Vol 98 ◽  
pp. 37-42 ◽  
Author(s):  
Kohji Matsumoto

Let dk(n) be the number of the factorizations of n into k positive numbers. It is known that the following asymptotic formula holds: where r and q are co-prime integers with 0 < r < q, Pk is a polynomial of degree k − 1, φ(q) is the Euler function, and Δk(q; r) is the error term. (See Lavrik [3]).


2004 ◽  
Vol 2004 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Aleksandar Ivic

Several estimates for the convolution functionC [f(x)]:=∫1xf(y) f(x/y)(dy/y)and its iterates are obtained whenf(x)is a suitable number-theoretic error term. We deal with the case of the asymptotic formula for∫0T|ζ(1/2+it)|2kdt(k=1,2), the general Dirichlet divisor problem, the problem of nonisomorphic Abelian groups of given order, and the Rankin-Selberg convolution.


2017 ◽  
Vol 102 (116) ◽  
pp. 155-174 ◽  
Author(s):  
Mouloud Goubi ◽  
Abdelmejid Bayad ◽  
Mohand Hernane

For coprime numbers p and q, we consider the Vasyunin-cotangent sum V(q, p)= ?p?1 k=1 {kq/p} cot (?k/p). First, we prove explicit formula for the symmetric sum V(p,q)+ V(q,p) which is a new reciprocity law for the sums above. This formula can be seen as a complement to the Bettin-Conrey result [13, Theorem 1]. Second, we establish an asymptotic formula for V(p,q). Finally, by use of continued fraction theory, we give a formula for V(p,q) in terms of continued fraction of p/q.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Mingxuan Zhong ◽  
Yuankui Ma

We obtain an asymptotic formula for the cube-full numbers in an arithmetic progression n ≡ l mod   q , where q , l = 1 . By extending the construction derived from Dirichlet’s hyperbola method and relying on Kloosterman-type exponential sum method, we improve the very recent error term with x 118 / 4029 < q .


Sign in / Sign up

Export Citation Format

Share Document