scholarly journals On the numerical solutions for a parabolic system with blow-up

2021 ◽  
Vol 6 (11) ◽  
pp. 11749-11777
Author(s):  
Chien-Hong Cho ◽  
◽  
Ying-Jung Lu ◽  

<abstract><p>We study the finite difference approximation for axisymmetric solutions of a parabolic system with blow-up. A scheme with adaptive temporal increments is commonly used to compute an approximate blow-up time. There are, however, some limitations to reproduce the blow-up behaviors for such schemes. We thus use an algorithm, in which uniform temporal grids are used, for the computation of the blow-up time and blow-up behaviors. In addition to the convergence of the numerical blow-up time, we also study various blow-up behaviors numerically, including the blow-up set, blow-up rate and blow-up in $ L^\sigma $-norm. Moreover, the relation between blow-up of the exact solution and that of the numerical solution is also analyzed and discussed.</p></abstract>

1966 ◽  
Vol 88 (4) ◽  
pp. 421-427 ◽  
Author(s):  
H. Z. Barakat ◽  
J. A. Clark

An explicit-finite difference approximation procedure which is unconditionally stable for the solution of the general multidimensional, nonhomogeneous diffusion equation is presented. This method possesses the advantages of the implicit methods, i.e., no severe limitation on the size of the time increment. Also it has the simplicity of the explicit methods and employs the same “marching” type technique of solution. Results obtained by this method for several different problems are compared with the exact solution and with those obtained by other finite-difference methods. For the examples solved the numerical results obtained by the present method are in closer agreement with the exact solution than are those obtained by the other methods.


1965 ◽  
Vol 5 (03) ◽  
pp. 247-258 ◽  
Author(s):  
Hubert J. Morel-Seytoux

Abstract Methods of predicting the influence of pattern geometry and mobility ratio on waterflooding recovery predictions are discussed. Two methods of calculation are used separately or concurrently. The analytical method yields exact solutions in a convenient form for a unit mobility ratio piston-like displacement. A few typical pressure distributions, sweep efficiencies and oil recoveries are presented for various patterns. For non-unit mobility ratio, one may resort to a numerical method, such as that of Sheldon and Dougherty. Because the domains of applicability of the analytical and numerical techniques overlap, the exact solutions provide estimates of the errors in the numerical procedures. The advantages of the analytical and numerical methods can be combined. To develop a numerical technique as independent of geometry as possible, the physical space is transformed into a standard rectangle. The entire effect of geometry is rendered through one term, the "scale-factor", derived from mapping relations. The scale factor can be calculated from the exact unit-mobility ratio solution for the particular pattern of interest. By this means recovery performances for arbitrary mobility ratio can be obtained for many patterns. A sample of results obtained in this manner is presented. Introduction Pattern geometry and mobility ratio are two major factors in making a waterflood recovery prediction. Because assisted recovery has become increasingly important to the oil industry, pattern configuration and mobility ratio also assume a greater significance in the assessment of the economic value of recovery projects. The influence of pattern geometry and mobility ratio in shaping a recovery curve and on the other quantities of interest to the reservoir engineer is the main subject of this paper. Much effort has already been spent on estimating quantitatively the influence of either pattern or mobility ratio or both on oil recovery. The literature reports many investigations of this nature. However, many results or methods of recovery prediction presented in the literature cannot be considered fully satisfactory. Even for unit mobility ratio and piston-like displacement, where analytical solutions are available, the literature shows discrepancies. For non-unit mobility ratio, the divergence in the results is extreme. For infinite mobility ratio in a repeated five-spot, depending on the investigator, the sweep efficiency ranges from 0 per cent to 60 per cent. With respect to the influence of pattern on recovery, only the repeated five-spot has received much attention. Other confined patterns and pilot configurations have received very little attention. Two calculation methods are presented in this paper, either separately or concurrently: the analytical method of potential theory and the numerical method of finite-difference approximation. The analytical method is more restricted in scope than the finite-difference method, but it has the definite advantage of providing exact solutions within its range of applicability. If a unit-mobility ratio piston-like displacement is assumed, the analytical approach is possible. A few typical results are reported in this paper; the detailed description of the general method and of a great variety of results will be the subject of other articles. For non-unity mobility ratio, we must resort to a numerical scheme. The numerical technique is that which was described by Sheldon and Dougherty. It is not limited to piston-like displacement. However, mainly single interface results will be presented here. Because the respective domains of applicability of the analytical and the numerical method overlap, useful comparisons of exact and numerical solutions can be made for a variety of patterns. The advantages of the analytical and numerical approaches can be combined. SPEJ P. 247ˆ


Author(s):  
F. DOMÍNGUEZ-MOTA ◽  
P. FERNÁNDEZ-VALDEZ ◽  
S. MENDOZA-ARMENTA ◽  
G. TINOCO-GUERRERO ◽  
J. G. TINOCO-RUIZ

The variational grid generation method is a powerful tool for generating structured convex grids on irregular simply connected domains whose boundary is a polygonal Jordan curve. Several examples that show the accuracy of a finite difference approximation to the solution of a Poisson equation using this kind of structured grids have been recently reported. In this paper, we compare the accuracy of the numerical solution calculated using those structured grids and finite differences against the solution obtained with Delaunay-like triangulations on irregular regions.


2012 ◽  
Vol 12 (1) ◽  
pp. 193-225 ◽  
Author(s):  
N. Anders Petersson ◽  
Björn Sjögreen

AbstractWe develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation. The material model is a super-imposition of N standard linear solid mechanisms, which commonly is used in seismology to model a material with constant quality factor Q. The proposed scheme discretizes the governing equations in second order displacement formulation using 3N memory variables, making it significantly more memory efficient than the commonly used first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation [SIAM J. Numer. Anal., 45 (2007), pp. 1902-1936]. Our main result is a proof that the proposed discretization is energy stable, even in the case of variable material properties. The proof relies on the summation-by-parts property of the discretization. The new scheme is implemented with grid refinement with hanging nodes on the interface. Numerical experiments verify the accuracy and stability of the new scheme. Semi-analytical solutions for a half-space problem and the LOH.3 layer over half-space problem are used to demonstrate how the number of viscoelastic mechanisms and the grid resolution influence the accuracy. We find that three standard linear solid mechanisms usually are sufficient to make the modeling error smaller than the discretization error.


Sign in / Sign up

Export Citation Format

Share Document