Analytical-Numerical Method in Waterflooding Predictions

1965 ◽  
Vol 5 (03) ◽  
pp. 247-258 ◽  
Author(s):  
Hubert J. Morel-Seytoux

Abstract Methods of predicting the influence of pattern geometry and mobility ratio on waterflooding recovery predictions are discussed. Two methods of calculation are used separately or concurrently. The analytical method yields exact solutions in a convenient form for a unit mobility ratio piston-like displacement. A few typical pressure distributions, sweep efficiencies and oil recoveries are presented for various patterns. For non-unit mobility ratio, one may resort to a numerical method, such as that of Sheldon and Dougherty. Because the domains of applicability of the analytical and numerical techniques overlap, the exact solutions provide estimates of the errors in the numerical procedures. The advantages of the analytical and numerical methods can be combined. To develop a numerical technique as independent of geometry as possible, the physical space is transformed into a standard rectangle. The entire effect of geometry is rendered through one term, the "scale-factor", derived from mapping relations. The scale factor can be calculated from the exact unit-mobility ratio solution for the particular pattern of interest. By this means recovery performances for arbitrary mobility ratio can be obtained for many patterns. A sample of results obtained in this manner is presented. Introduction Pattern geometry and mobility ratio are two major factors in making a waterflood recovery prediction. Because assisted recovery has become increasingly important to the oil industry, pattern configuration and mobility ratio also assume a greater significance in the assessment of the economic value of recovery projects. The influence of pattern geometry and mobility ratio in shaping a recovery curve and on the other quantities of interest to the reservoir engineer is the main subject of this paper. Much effort has already been spent on estimating quantitatively the influence of either pattern or mobility ratio or both on oil recovery. The literature reports many investigations of this nature. However, many results or methods of recovery prediction presented in the literature cannot be considered fully satisfactory. Even for unit mobility ratio and piston-like displacement, where analytical solutions are available, the literature shows discrepancies. For non-unit mobility ratio, the divergence in the results is extreme. For infinite mobility ratio in a repeated five-spot, depending on the investigator, the sweep efficiency ranges from 0 per cent to 60 per cent. With respect to the influence of pattern on recovery, only the repeated five-spot has received much attention. Other confined patterns and pilot configurations have received very little attention. Two calculation methods are presented in this paper, either separately or concurrently: the analytical method of potential theory and the numerical method of finite-difference approximation. The analytical method is more restricted in scope than the finite-difference method, but it has the definite advantage of providing exact solutions within its range of applicability. If a unit-mobility ratio piston-like displacement is assumed, the analytical approach is possible. A few typical results are reported in this paper; the detailed description of the general method and of a great variety of results will be the subject of other articles. For non-unity mobility ratio, we must resort to a numerical scheme. The numerical technique is that which was described by Sheldon and Dougherty. It is not limited to piston-like displacement. However, mainly single interface results will be presented here. Because the respective domains of applicability of the analytical and the numerical method overlap, useful comparisons of exact and numerical solutions can be made for a variety of patterns. The advantages of the analytical and numerical approaches can be combined. SPEJ P. 247ˆ

2016 ◽  
Vol 5 (4) ◽  
pp. 202
Author(s):  
Abdulkafi Saeed

In this paper, a new numerical scheme based on explicit finite difference approximation for solving fractional hyperbolic partial differential equations (FHPDE’s) is formulated. Numerical studies for the model problems are presented to confirm the accuracy and the effectiveness of the proposed method. The obtained results of proposed system are compared with exact solutions and the original system to show the efficient of the new method.


1966 ◽  
Vol 6 (03) ◽  
pp. 217-227 ◽  
Author(s):  
Hubert J. Morel-Seytoux

Abstract The influence of pattern geometry on assisted oil recovery for a particular displacement mechanism is the object of investigation in this paper. The displacement is assumed to be of unit mobility ratio and piston-like. Fluids are assumed incompressible and gravity and capillary effects are neglected. With these assumptions it is possible to calculate by analytical methods the quantities of interest to the reservoir engineer for a great variety of patterns. Specifically, this paper presentsvery briefly, the methods and mathematical derivations required to obtain the results of engineering concern, andtypical results in the form of graphs or formulae that can be used readily without prior study of the methods. Results of this work provide checks for solutions obtained from programmed numerical techniques. They also reveal the effect of pattern geometry and, even though the assumptions of piston-like displacement and of unit mobility ratio are restrictive, they can nevertheless be used for rather crude but quick, cheap estimates. These estimates can be refined to account for non-unit mobility ratio and two-phase flow by correlating analytical results in the case M=1 and the numerical results for non-Piston, non-unit mobility ratio displacements. In an earlier paper1 it was also shown that from the knowledge of closed form solutions for unit mobility ratio, quantities called "scale factors" could be readily calculated, increasing considerably the flexibility of the numerical techniques. Many new closed form solutions are given in this paper. INTRODUCTION BACKGROUND Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken. To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected. BACKGROUND Pattern geometry is a major factor in making water-flood recovery predictions. For this reason many numerical schemes have been devised to predict oil recovery in either regular patterns or arbitrary configurations. The numerical solutions, based on the method of finite difference approximation, are subject to errors often difficult to evaluate. An estimate of the error is possible by comparison with exact solutions. To provide a variety of checks on numerical solutions, a thorough study of the unit mobility ratio displacement process was undertaken. To calculate quantities of interest to the reservoir engineer (oil recovery, sweep efficiency, etc.), it is necessary to first know the pressure distribution in the pattern. Then analytical procedures are used to calculate, in order of increasing difficulty: injectivity, breakthrough areal sweep efficiency, normalized oil recovery and water-oil ratio as a function of normalized PV injected.


2021 ◽  
Vol 6 (11) ◽  
pp. 11749-11777
Author(s):  
Chien-Hong Cho ◽  
◽  
Ying-Jung Lu ◽  

<abstract><p>We study the finite difference approximation for axisymmetric solutions of a parabolic system with blow-up. A scheme with adaptive temporal increments is commonly used to compute an approximate blow-up time. There are, however, some limitations to reproduce the blow-up behaviors for such schemes. We thus use an algorithm, in which uniform temporal grids are used, for the computation of the blow-up time and blow-up behaviors. In addition to the convergence of the numerical blow-up time, we also study various blow-up behaviors numerically, including the blow-up set, blow-up rate and blow-up in $ L^\sigma $-norm. Moreover, the relation between blow-up of the exact solution and that of the numerical solution is also analyzed and discussed.</p></abstract>


2012 ◽  
Vol 12 (1) ◽  
pp. 193-225 ◽  
Author(s):  
N. Anders Petersson ◽  
Björn Sjögreen

AbstractWe develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation. The material model is a super-imposition of N standard linear solid mechanisms, which commonly is used in seismology to model a material with constant quality factor Q. The proposed scheme discretizes the governing equations in second order displacement formulation using 3N memory variables, making it significantly more memory efficient than the commonly used first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation [SIAM J. Numer. Anal., 45 (2007), pp. 1902-1936]. Our main result is a proof that the proposed discretization is energy stable, even in the case of variable material properties. The proof relies on the summation-by-parts property of the discretization. The new scheme is implemented with grid refinement with hanging nodes on the interface. Numerical experiments verify the accuracy and stability of the new scheme. Semi-analytical solutions for a half-space problem and the LOH.3 layer over half-space problem are used to demonstrate how the number of viscoelastic mechanisms and the grid resolution influence the accuracy. We find that three standard linear solid mechanisms usually are sufficient to make the modeling error smaller than the discretization error.


Sign in / Sign up

Export Citation Format

Share Document