scholarly journals The limit of reciprocal sum of some subsequential Fibonacci numbers

2021 ◽  
Vol 6 (11) ◽  
pp. 12379-12394
Author(s):  
Ho-Hyeong Lee ◽  
◽  
Jong-Do Park

<abstract><p>This paper deals with the sum of reciprocal Fibonacci numbers. Let $ f_0 = 0 $, $ f_1 = 1 $ and $ f_{n+1} = f_n+f_{n-1} $ for any $ n\in\mathbb{N} $. In this paper, we prove new estimates on $ \sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} $, where $ m\in\mathbb{N} $ and $ 0\leq\ell\leq m-1 $. As a consequence of some inequalities, we prove</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \lim\limits_{n\rightarrow \infty}\left\{\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}} \right)^{-1} -(f_{mn-\ell}-f_{m(n-1)-\ell})\right\} = 0. $\end{document} </tex-math></disp-formula></p> <p>And we also compute the explicit value of $ \left\lfloor\left(\sum\limits^\infty_{k = n}\frac{1}{f_{mk-\ell}}\right)^{-1}\right\rfloor $. The interesting observation is that the value depends on $ m(n+1)+\ell $.</p></abstract>

2020 ◽  
Vol 70 (3) ◽  
pp. 641-656
Author(s):  
Amira Khelifa ◽  
Yacine Halim ◽  
Abderrahmane Bouchair ◽  
Massaoud Berkal

AbstractIn this paper we give some theoretical explanations related to the representation for the general solution of the system of the higher-order rational difference equations$$\begin{array}{} \displaystyle x_{n+1} = \dfrac{1+2y_{n-k}}{3+y_{n-k}},\qquad y_{n+1} = \dfrac{1+2z_{n-k}}{3+z_{n-k}},\qquad z_{n+1} = \dfrac{1+2x_{n-k}}{3+x_{n-k}}, \end{array}$$where n, k∈ ℕ0, the initial values x−k, x−k+1, …, x0, y−k, y−k+1, …, y0, z−k, z−k+1, …, z1 and z0 are arbitrary real numbers do not equal −3. This system can be solved in a closed-form and we will see that the solutions are expressed using the famous Fibonacci and Lucas numbers.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Vivek Kumar Singh ◽  
Rama Mishra ◽  
P. Ramadevi

Abstract Weaving knots W(p, n) of type (p, n) denote an infinite family of hyperbolic knots which have not been addressed by the knot theorists as yet. Unlike the well known (p, n) torus knots, we do not have a closed-form expression for HOMFLY-PT and the colored HOMFLY-PT for W(p, n). In this paper, we confine to a hybrid generalization of W(3, n) which we denote as $$ {\hat{W}}_3 $$ W ̂ 3 (m, n) and obtain closed form expression for HOMFLY-PT using the Reshitikhin and Turaev method involving $$ \mathrm{\mathcal{R}} $$ ℛ -matrices. Further, we also compute [r]-colored HOMFLY-PT for W(3, n). Surprisingly, we observe that trace of the product of two dimensional $$ \hat{\mathrm{\mathcal{R}}} $$ ℛ ̂ -matrices can be written in terms of infinite family of Laurent polynomials $$ {\mathcal{V}}_{n,t}\left[q\right] $$ V n , t q whose absolute coefficients has interesting relation to the Fibonacci numbers $$ {\mathrm{\mathcal{F}}}_n $$ ℱ n . We also computed reformulated invariants and the BPS integers in the context of topological strings. From our analysis, we propose that certain refined BPS integers for weaving knot W(3, n) can be explicitly derived from the coefficients of Chebyshev polynomials of first kind.


2020 ◽  
Vol 12 (11) ◽  
pp. 4563
Author(s):  
Sangpil Ko ◽  
Pasi Lautala ◽  
Kuilin Zhang

Rail car availability and the challenges associated with the seasonal dynamics of log movements have received growing attentions in the Lake Superior region of the US, as a portion of rail car fleet is close to reaching the end of its service life. This paper proposes a data-driven study on the rail car peaking issue to explore the fleet of rail cars dedicated to being used for log movements in the region, and to evaluate how the number of cars affects both the storage need at the sidings and the time the cars are idled. This study is based on the actual log scale data collected from a group of forest companies in cooperation with the Lake State Shippers Association (LSSA). The results of our analysis revealed that moving the current log volumes in the region would require approximately 400–600 dedicated and shared log cars in ideal conditions, depending on the specific month. While the higher fleet size could move the logs as they arrive to the siding, the lower end would nearly eliminate the idling of rail cars and enable stable volumes throughout the year. However, this would require short-term storage and additional handling of logs at the siding, both elements that increase the costs for shippers. Another interesting observation was the fact that the reduction of a single day in the loading/unloading process (2.5 to 1.5 days) would eliminate almost 100 cars (20%) of the fleet without reduction in throughput.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 962
Author(s):  
Eva Trojovská  ◽  
Pavel Trojovský

Let (tn(r))n≥0 be the sequence of the generalized Fibonacci number of order r, which is defined by the recurrence tn(r)=tn−1(r)+⋯+tn−r(r) for n≥r, with initial values t0(r)=0 and ti(r)=1, for all 1≤i≤r. In 2002, Grossman and Luca searched for terms of the sequence (tn(2))n, which are expressible as a sum of factorials. In this paper, we continue this program by proving that, for any ℓ≥1, there exists an effectively computable constant C=C(ℓ)>0 (only depending on ℓ), such that, if (m,n,r) is a solution of tm(r)=n!+(n+1)!+⋯+(n+ℓ)!, with r even, then max{m,n,r}<C. As an application, we solve the previous equation for all 1≤ℓ≤5.


2005 ◽  
Vol 20 (20n21) ◽  
pp. 4797-4819 ◽  
Author(s):  
MATTHIAS SCHORK

Some algebraical, combinatorial and analytical aspects of paragrassmann variables are discussed. In particular, the similarity of the combinatorics involved with those of generalized exclusion statistics (Gentile's intermediate statistics) is stressed. It is shown that the dimensions of the algebras of generalized grassmann variables are related to generalized Fibonacci numbers. On the analytical side, some of the simplest differential equations are discussed and a suitably generalized Berezin integral as well as an associated delta-function are considered. Some remarks concerning a geometrical interpretation of recent results about fractional superconformal transformations involving generalized grassmann variables are given. Finally, a quantity related to the Witten index is discussed.


Sign in / Sign up

Export Citation Format

Share Document