Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators
Keyword(s):
<abstract><p>In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{matrix} - \Delta u(x)+{{(-\Delta )}^{s}}u(x)=f(x), & x\in \Omega , \\ u(x)\ge 0,~~~~~ & x\in \Omega , \\ u(x)=0,~~~~~ & x\in {{\mathbb{R}}^{N}}\setminus \Omega , \\ \end{matrix} \right. $\end{document} </tex-math></disp-formula></p> <p>where $ 0 < s < 1 $, $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain, $ (-\Delta)^s $ is the fractional Laplace operator, $ f $ is a measurable function.</p></abstract>
Keyword(s):
2003 ◽
Vol 133
(2)
◽
pp. 297-306
◽
2002 ◽
Vol 132
(01)
◽
pp. 1
Keyword(s):
1992 ◽
Vol 116
(2)
◽
pp. 513-513
Keyword(s):