Pointwise Lower Bounds for Solutions of Semilinear Elliptic Equations and Applications

2014 ◽  
Vol 14 (4) ◽  
Author(s):  
Asadollah Aghajani ◽  
Alireza Mosleh Tehrani ◽  
Nassif Ghoussoub

AbstractWe consider the semilinear elliptic problem −Δu = f (x, u), posed in a smooth bounded domain Ω of ℝ


Author(s):  
Ehsan Kamalinejad ◽  
Amir Moradifam

We study the radial symmetry of large solutions of the semilinear elliptic problem Δu + ∇h · ∇u = f (∣x∣, u), and we provide sharp conditions under which the problem has a radial solution. The result is independent of the rate of growth of the solution at infinity.



Mathematica ◽  
2021 ◽  
Vol 63 (86) (1) ◽  
pp. 23-31
Author(s):  
Badajena Arun Kumar ◽  
Pradhan Shesadev

We study the existence of a weak solution for a certain degenerate semilinear elliptic problem.



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Massimo Grossi

<p style='text-indent:20px;'>In this survey we discuss old and new results on the number of critical points of solutions of the problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE0.1"> \begin{document}$ \begin{equation} \begin{cases} -\Delta u = f(u)&amp;in\ \Omega\\ u = 0&amp;on\ \partial \Omega \end{cases} \;\;\;\;\;\;\;\;(0.1)\end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \Omega\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ N\ge2 $\end{document}</tex-math></inline-formula> is a smooth bounded domain. Both cases where <inline-formula><tex-math id="M3">\begin{document}$ u $\end{document}</tex-math></inline-formula> is a positive or nodal solution will be considered.</p>



2021 ◽  
Vol 7 (3) ◽  
pp. 4199-4210
Author(s):  
CaiDan LaMao ◽  
◽  
Shuibo Huang ◽  
Qiaoyu Tian ◽  
Canyun Huang ◽  
...  

<abstract><p>In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{ \begin{matrix} - \Delta u(x)+{{(-\Delta )}^{s}}u(x)=f(x), &amp; x\in \Omega , \\ u(x)\ge 0,~~~~~ &amp; x\in \Omega , \\ u(x)=0,~~~~~ &amp; x\in {{\mathbb{R}}^{N}}\setminus \Omega , \\ \end{matrix} \right. $\end{document} </tex-math></disp-formula></p> <p>where $ 0 &lt; s &lt; 1 $, $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain, $ (-\Delta)^s $ is the fractional Laplace operator, $ f $ is a measurable function.</p></abstract>



2012 ◽  
Vol 14 (03) ◽  
pp. 1250021 ◽  
Author(s):  
FRANCISCO ODAIR DE PAIVA

This paper is devoted to the study of existence, nonexistence and multiplicity of positive solutions for the semilinear elliptic problem [Formula: see text] where Ω is a bounded domain of ℝN, λ ∈ ℝ and g(x, u) is a Carathéodory function. The obtained results apply to the following classes of nonlinearities: a(x)uq + b(x)up and c(x)(1 + u)p (0 ≤ q < 1 < p). The proofs rely on the sub-super solution method and the mountain pass theorem.



2004 ◽  
Vol 4 (1) ◽  
Author(s):  
Khalil El Mehdi ◽  
Massimo Grossi

AbstractIn this paper we study a semilinear elliptic problem on a bounded domain in ℝ



2008 ◽  
Vol 2 (2) ◽  
pp. 158-174 ◽  
Author(s):  
Qianqiao Guo ◽  
Pengcheng Niu ◽  
Jingbo Dou

We consider the semilinear elliptic problem with critical Hardy-Sobolev exponents and Dirichlet boundary condition. By using variational methods we obtain the existence and multiplicity of nontrivial solutions and improve the former results.



2018 ◽  
Vol 9 (1) ◽  
pp. 108-123 ◽  
Author(s):  
Claudianor O. Alves ◽  
Grey Ercole ◽  
M. Daniel Huamán Bolaños

Abstract We prove the existence of at least one ground state solution for the semilinear elliptic problem \left\{\begin{aligned} \displaystyle-\Delta u&\displaystyle=u^{p(x)-1},\quad u% >0,\quad\text{in}\ G\subseteq\mathbb{R}^{N},\ N\geq 3,\\ \displaystyle u&\displaystyle\in D_{0}^{1,2}(G),\end{aligned}\right. where G is either {\mathbb{R}^{N}} or a bounded domain, and {p\colon G\to\mathbb{R}} is a continuous function assuming critical and subcritical values.



2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Shusen Yan ◽  
Weilin Yu

<p style='text-indent:20px;'>In this paper, we consider the inviscid, incompressible planar flows in a bounded domain with a hole and construct stationary classical solutions with single vortex core, which is closed to the hole. This is carried out by constructing solutions to the following semilinear elliptic problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1111"> \begin{document}$ \begin{equation} \begin{cases} -\Delta \psi = \lambda(\psi-\frac{\kappa}{4\pi}\ln\lambda)_+^p,\quad &amp;\text{in}\; \Omega,\\ \psi = \rho_\lambda,\quad &amp;\text{on}\; \partial O_0,\\ \psi = 0,\quad &amp;\text{on}\; \partial\Omega_0, \end{cases} \;\;\;\;\;\;\;\;(1)\end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ p&gt;1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ \kappa $\end{document}</tex-math></inline-formula> is a positive constant, <inline-formula><tex-math id="M3">\begin{document}$ \rho_\lambda $\end{document}</tex-math></inline-formula> is a constant, depending on <inline-formula><tex-math id="M4">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ \Omega = \Omega_0\setminus \bar{O}_0 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M6">\begin{document}$ \Omega_0 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ O_0 $\end{document}</tex-math></inline-formula> are two planar bounded simply-connected domains. We show that under the assumption <inline-formula><tex-math id="M8">\begin{document}$ (\ln\lambda)^\sigma\leq\rho_\lambda\leq (\ln\lambda)^{1-\sigma} $\end{document}</tex-math></inline-formula> for some <inline-formula><tex-math id="M9">\begin{document}$ \sigma&gt;0 $\end{document}</tex-math></inline-formula> small, (1) has a solution <inline-formula><tex-math id="M10">\begin{document}$ \psi_\lambda $\end{document}</tex-math></inline-formula>, whose vorticity set <inline-formula><tex-math id="M11">\begin{document}$ \{y\in \Omega:\, \psi(y)-\kappa+\rho_\lambda\eta(y)&gt;0\} $\end{document}</tex-math></inline-formula> shrinks to the boundary of the hole as <inline-formula><tex-math id="M12">\begin{document}$ \lambda\to +\infty $\end{document}</tex-math></inline-formula>.</p>



Sign in / Sign up

Export Citation Format

Share Document