scholarly journals Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity

2016 ◽  
Vol 13 (6) ◽  
pp. 1223-1240 ◽  
Author(s):  
Shuo Wang ◽  
Heinz Schättler
2020 ◽  
Vol 15 ◽  
pp. 69
Author(s):  
Maciej Leszczyński ◽  
Urszula Ledzewicz ◽  
Heinz Schättler

An optimal control problem for an abstract mathematical model for cancer chemotherapy is considered. The dynamics is for a single drug and includes pharmacodynamic (PD) and pharmacokinetic (PK) models. The aim is to point out qualitative changes in the structures of optimal controls that occur as these pharmacometric models are varied. This concerns (i) changes in the PD-model for the effectiveness of the drug (e.g., between a linear log-kill term and a non-linear Michaelis-Menten type Emax-model) and (ii) the question how the incorporation of a mathematical model for the pharmacokinetics of the drug effects optimal controls. The general results will be illustrated and discussed in the framework of a mathematical model for anti-angiogenic therapy.


2021 ◽  
Vol 145 ◽  
pp. 110789
Author(s):  
Parthasakha Das ◽  
Samhita Das ◽  
Pritha Das ◽  
Fathalla A. Rihan ◽  
Muhammet Uzuntarla ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


2021 ◽  
Vol 5 (4) ◽  
pp. 261
Author(s):  
Silvério Rosa ◽  
Delfim F. M. Torres

A Caputo-type fractional-order mathematical model for “metapopulation cholera transmission” was recently proposed in [Chaos Solitons Fractals 117 (2018), 37–49]. A sensitivity analysis of that model is done here to show the accuracy relevance of parameter estimation. Then, a fractional optimal control (FOC) problem is formulated and numerically solved. A cost-effectiveness analysis is performed to assess the relevance of studied control measures. Moreover, such analysis allows us to assess the cost and effectiveness of the control measures during intervention. We conclude that the FOC system is more effective only in part of the time interval. For this reason, we propose a system where the derivative order varies along the time interval, being fractional or classical when more advantageous. Such variable-order fractional model, that we call a FractInt system, shows to be the most effective in the control of the disease.


Author(s):  
Elizaveta Shmalko ◽  
Yuri Rumyantsev ◽  
Ruslan Baynazarov ◽  
Konstantin Yamshanov

To calculate the optimal control, a satisfactory mathematical model of the control object is required. Further, when implementing the calculated controls on a real object, the same model can be used in robot navigation to predict its position and correct sensor data, therefore, it is important that the model adequately reflects the dynamics of the object. Model derivation is often time-consuming and sometimes even impossible using traditional methods. In view of the increasing diversity and extremely complex nature of control objects, including the variety of modern robotic systems, the identification problem is becoming increasingly important, which allows you to build a mathematical model of the control object, having input and output data about the system. The identification of a nonlinear system is of particular interest, since most real systems have nonlinear dynamics. And if earlier the identification of the system model consisted in the selection of the optimal parameters for the selected structure, then the emergence of modern machine learning methods opens up broader prospects and allows you to automate the identification process itself. In this paper, a wheeled robot with a differential drive in the Gazebo simulation environment, which is currently the most popular software package for the development and simulation of robotic systems, is considered as a control object. The mathematical model of the robot is unknown in advance. The main problem is that the existing mathematical models do not correspond to the real dynamics of the robot in the simulator. The paper considers the solution to the problem of identifying a mathematical model of a control object using machine learning technique of the neural networks. A new mixed approach is proposed. It is based on the use of well-known simple models of the object and identification of unaccounted dynamic properties of the object using a neural network based on a training sample. To generate training data, a software package was written that automates the collection process using two ROS nodes. To train the neural network, the PyTorch framework was used and an open source software package was created. Further, the identified object model is used to calculate the optimal control. The results of the computational experiment demonstrate the adequacy and performance of the resulting model. The presented approach based on a combination of a well-known mathematical model and an additional identified neural network model allows using the advantages of the accumulated physical apparatus and increasing its efficiency and accuracy through the use of modern machine learning tools.


Sign in / Sign up

Export Citation Format

Share Document