scholarly journals Development of surrogate models in reliability-based design optimization: A review

2021 ◽  
Vol 18 (5) ◽  
pp. 6386-6409
Author(s):  
Xiaoke Li ◽  
◽  
Qingyu Yang ◽  
Yang Wang ◽  
Xinyu Han ◽  
...  

<abstract> <p>Reliability-based design optimization (RBDO) is applied to handle the unavoidable uncertainties in engineering applications. To alleviate the huge computational burden in reliability analysis and design optimization, surrogate models are introduced to replace the implicit objective and performance functions. In this paper, the commonly used surrogate modeling methods and surrogate-assisted RBDO methods are reviewed and discussed. First, the existing reliability analysis methods, RBDO methods, commonly used surrogate models in RBDO, sample selection methods and accuracy evaluation methods of surrogate models are summarized and compared. Then the surrogate-assisted RBDO methods are classified into global modeling methods and local modeling methods. A classic two-dimensional RBDO numerical example are used to demonstrate the performance of representative global modeling method (Constraint Boundary Sampling, CBS) and local modeling method (Local Adaptive Sampling, LAS). The advantages and disadvantages of these two kinds of modeling methods are summarized and compared. Finally, summary and prospect of the surrogate–assisted RBDO methods are drown.</p> </abstract>

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Barron J. Bichon ◽  
Michael S. Eldred ◽  
Sankaran Mahadevan ◽  
John M. McFarland

Determining the optimal (lightest, least expensive, etc.) design for an engineered component or system that meets or exceeds a specified level of reliability is a problem of obvious interest across a wide spectrum of engineering fields. Various formulations and methods for solving this reliability-based design optimization problem have been proposed, but they typically involve accepting a tradeoff between accuracy and efficiency in the reliability analysis. This paper investigates the use of the efficient global optimization and efficient global reliability analysis methods to construct surrogate models at both the design optimization and reliability analysis levels to create methods that are more efficient than existing methods without sacrificing accuracy. Several formulations are proposed and compared through a series of test problems.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879333 ◽  
Author(s):  
Zhiliang Huang ◽  
Tongguang Yang ◽  
Fangyi Li

Conventional decoupling approaches usually employ first-order reliability method to deal with probabilistic constraints in a reliability-based design optimization problem. In first-order reliability method, constraint functions are transformed into a standard normal space. Extra non-linearity introduced by the non-normal-to-normal transformation may increase the error in reliability analysis and then result in the reliability-based design optimization analysis with insufficient accuracy. In this article, a decoupling approach is proposed to provide an alternative tool for the reliability-based design optimization problems. To improve accuracy, the reliability analysis is performed by first-order asymptotic integration method without any extra non-linearity transformation. To achieve high efficiency, an approximate technique of reliability analysis is given to avoid calculating time-consuming performance function. Two numerical examples and an application of practical laptop structural design are presented to validate the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document