scholarly journals Interaction between hydrogen sulfide, nitric oxide, and carbon monoxide pathways in the bovine isolated retina

2019 ◽  
Vol 6 (3) ◽  
pp. 104-115 ◽  
Author(s):  
Madhura Kulkarni-Chitnis ◽  
◽  
Leah Mitchell-Bush ◽  
Remmington Belford ◽  
Jenaye Robinson ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan Mohammad Mir ◽  
Ram Charitra Maurya ◽  
Mohd Washid Khan

Abstract A set of well defined signaling molecules responsible for normal functioning of human physiology including nitric oxide along with carbon monoxide and hydrogen sulphide are referred as “gasotransmitters”. Due to their involvement in almost every system of a human body, the care of highly sensitive organs using these molecules as drugs represents highly fascinating area of research. In connection with these interesting aspects, the applied aspects of these gaseous molecules in maintaining healthy eye and vision have been targeted in this review. Several examples of eye-droppers including NORMs like latanoprost and nipradiol, CORMs like CORM-3 and CORM-A1, and Hydrogen sulfide releasing system like GYY4137 have been discussed in this context. Therefore the relation of these trio-gasotransmitters with the ophthalmic homeostasis on one hand, and de-infecting role on the other hand has been mainly highlighted. Some molecular systems capable of mimicking gasotransmitter action have also been introduced in connection with the titled theme.


Author(s):  
Md. Aejazur Rahman ◽  
Joel N. Glasgow ◽  
Sajid Nadeem ◽  
Vineel P. Reddy ◽  
Ritesh R. Sevalkar ◽  
...  

For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.


2018 ◽  
Vol 46 (5) ◽  
pp. 1107-1118 ◽  
Author(s):  
Lauren K. Wareham ◽  
Hannah M. Southam ◽  
Robert K. Poole

A gasotransmitter is defined as a small, generally reactive, gaseous molecule that, in solution, is generated endogenously in an organism and exerts important signalling roles. It is noteworthy that these molecules are also toxic and antimicrobial. We ask: is this definition of a gasotransmitter appropriate in the cases of nitric oxide, carbon monoxide and hydrogen sulfide (H2S) in microbes? Recent advances show that, not only do bacteria synthesise each of these gases, but the molecules also have important signalling or messenger roles in addition to their toxic effects. However, strict application of the criteria proposed for a gasotransmitter leads us to conclude that the term ‘small molecule signalling agent’, as proposed by Fukuto and others, is preferable terminology.


2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Timothy R. Billiar ◽  
Giuseppe Cirino ◽  
David Fulton ◽  
Roberto Motterlini ◽  
Andreas Papapetropoulos ◽  
...  

Hydrogen sulfide is a gasotransmitter, with similarities to nitric oxide and carbon monoxide. Although the enzymes indicated below have multiple enzymatic activities, the focus here is the generation of hydrogen sulphide (H2S) and the enzymatic characteristics are described accordingly. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) are pyridoxal phosphate (PLP)-dependent enzymes. 3-mercaptopyruvate sulfurtransferase (3-MPST) functions to generate H2S; only CAT is PLP-dependent, while 3-MPST is not. Thus, this third pathway is sometimes referred to as PLP-independent. CBS and CSE are predominantly cytosolic enzymes, while 3-MPST is found both in the cytosol and the mitochondria. For an authoritative review on the pharmacological modulation of H2S levels, see Szabo and Papapetropoulos, 2017 [4].


Nitric Oxide ◽  
2013 ◽  
Vol 31 ◽  
pp. S30-S31
Author(s):  
Sebastiaan Wesseling ◽  
Joost O. Fledderus ◽  
Marianne C. Verhaar ◽  
Jaap A. Joles

2012 ◽  
Vol 184 (2) ◽  
pp. 117-129 ◽  
Author(s):  
Kenneth R. Olson ◽  
John A. Donald ◽  
Ryan A. Dombkowski ◽  
Steve F. Perry

Sign in / Sign up

Export Citation Format

Share Document