scholarly journals Random attractors for wave equations on unbounded domains

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Bixiang Wang

<p style='text-indent:20px;'>This paper deals with the asymptotic behavior of the non-autonomous random dynamical systems generated by the wave equations with supercritical nonlinearity driven by colored noise defined on <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ n\le 6 $\end{document}</tex-math></inline-formula>. Based on the uniform Strichartz estimates, we prove the well-posedness of the equation in the natural energy space and define a continuous cocycle associated with the solution operator. We also establish the existence and uniqueness of tempered random attractors of the equation by showing the uniform smallness of the tails of the solutions outside a bounded domain in order to overcome the non-compactness of Sobolev embeddings on unbounded domains.</p>


Author(s):  
Tomás Caraballo ◽  
Boling Guo ◽  
Nguyen Huy Tuan ◽  
Renhai Wang

This paper is concerned with the asymptotic behaviour of solutions to a class of non-autonomous stochastic nonlinear wave equations with dispersive and viscosity dissipative terms driven by operator-type noise defined on the entire space $\mathbb {R}^n$ . The existence, uniqueness, time-semi-uniform compactness and asymptotically autonomous robustness of pullback random attractors are proved in $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$ when the growth rate of the nonlinearity has a subcritical range, the density of the noise is suitably controllable, and the time-dependent force converges to a time-independent function in some sense. The main difficulty to establish the time-semi-uniform pullback asymptotic compactness of the solutions in $H^1(\mathbb {R}^n)\times H^1(\mathbb {R}^n)$ is caused by the lack of compact Sobolev embeddings on $\mathbb {R}^n$ , as well as the weak dissipativeness of the equations is surmounted at light of the idea of uniform tail-estimates and a spectral decomposition approach. The measurability of random attractors is proved by using an argument which considers two attracting universes developed by Wang and Li (Phys. D 382: 46–57, 2018).


2021 ◽  
Vol 6 (12) ◽  
pp. 13634-13664
Author(s):  
Li Yang ◽  

<abstract><p>In this paper, we consider the asymptotic behavior of solutions to stochastic strongly damped wave equations with variable delays on unbounded domains, which is driven by both additive noise and deterministic non-autonomous forcing. We first establish a continuous cocycle for the equations. Then we prove asymptotic compactness of the cocycle by tail-estimates and a decomposition technique of solutions. Finally, we obtain the existence of a tempered pullback random attractor.</p></abstract>


2019 ◽  
Vol 17 (1) ◽  
pp. 1281-1302 ◽  
Author(s):  
Xiaobin Yao ◽  
Xilan Liu

Abstract We study the asymptotic behavior of solutions to the non-autonomous stochastic plate equation driven by additive noise defined on unbounded domains. We first prove the uniform estimates of solutions, and then establish the existence and upper semicontinuity of random attractors.


2013 ◽  
Vol 255 (11) ◽  
pp. 3897-3919 ◽  
Author(s):  
Z. Brzeźniak ◽  
T. Caraballo ◽  
J.A. Langa ◽  
Y. Li ◽  
G. Łukaszewicz ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Qiuying Lu ◽  
Guifeng Deng ◽  
Weipeng Zhang

We prove the existence of a pullback attractor inL2(ℝn)for the stochastic Ginzburg-Landau equation with additive noise on the entiren-dimensional spaceℝn. We show that the stochastic Ginzburg-Landau equation with additive noise can be recast as a random dynamical system. We demonstrate that the system possesses a uniqueD-random attractor, for which the asymptotic compactness is established by the method of uniform estimates on the tails of its solutions.


2019 ◽  
Vol 19 (05) ◽  
pp. 1950035
Author(s):  
Anhui Gu ◽  
Bixiang Wang

We investigate the pathwise asymptotic behavior of the FitzHugh–Nagumo systems defined on unbounded domains driven by nonlinear colored noise. We prove the existence and uniqueness of tempered pullback random attractors of the systems with polynomial diffusion terms. The pullback asymptotic compactness of solutions is obtained by the uniform estimates on the tails of solutions outside a bounded domain. We also examine the limiting behavior of the FitzHugh–Nagumo systems driven by linear colored noise as the correlation time of the colored noise approaches zero. In this respect, we prove that the solutions and the pullback random attractors of the systems driven by linear colored noise converge to that of the corresponding stochastic systems driven by linear white noise.


Sign in / Sign up

Export Citation Format

Share Document