scholarly journals Asymptotic behavior for non-autonomous stochastic plate equation on unbounded domains

2019 ◽  
Vol 17 (1) ◽  
pp. 1281-1302 ◽  
Author(s):  
Xiaobin Yao ◽  
Xilan Liu

Abstract We study the asymptotic behavior of solutions to the non-autonomous stochastic plate equation driven by additive noise defined on unbounded domains. We first prove the uniform estimates of solutions, and then establish the existence and upper semicontinuity of random attractors.

Author(s):  
Xiaobin Yao

We study the asymptotic behavior of solutions to the non-autonomous stochastic extensible plate equation driven by additive noise defined on unbounded domains. We first prove the uniform estimates of solutions, and then establish the existence of a random attractor.


2021 ◽  
Vol 6 (12) ◽  
pp. 13634-13664
Author(s):  
Li Yang ◽  

<abstract><p>In this paper, we consider the asymptotic behavior of solutions to stochastic strongly damped wave equations with variable delays on unbounded domains, which is driven by both additive noise and deterministic non-autonomous forcing. We first establish a continuous cocycle for the equations. Then we prove asymptotic compactness of the cocycle by tail-estimates and a decomposition technique of solutions. Finally, we obtain the existence of a tempered pullback random attractor.</p></abstract>


2019 ◽  
Vol 20 (03) ◽  
pp. 2050018
Author(s):  
Lin Shi ◽  
Dingshi Li ◽  
Xiliang Li ◽  
Xiaohu Wang

We investigate the asymptotic behavior of a class of non-autonomous stochastic FitzHugh–Nagumo systems driven by additive white noise on unbounded thin domains. For this aim, we first show the existence and uniqueness of random attractors for the considered equations and their limit equations. Then, we establish the upper semicontinuity of these attractors when the thin domains collapse into a lower-dimensional unbounded domain.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Qiuying Lu ◽  
Guifeng Deng ◽  
Weipeng Zhang

We prove the existence of a pullback attractor inL2(ℝn)for the stochastic Ginzburg-Landau equation with additive noise on the entiren-dimensional spaceℝn. We show that the stochastic Ginzburg-Landau equation with additive noise can be recast as a random dynamical system. We demonstrate that the system possesses a uniqueD-random attractor, for which the asymptotic compactness is established by the method of uniform estimates on the tails of its solutions.


2019 ◽  
Vol 19 (05) ◽  
pp. 1950035
Author(s):  
Anhui Gu ◽  
Bixiang Wang

We investigate the pathwise asymptotic behavior of the FitzHugh–Nagumo systems defined on unbounded domains driven by nonlinear colored noise. We prove the existence and uniqueness of tempered pullback random attractors of the systems with polynomial diffusion terms. The pullback asymptotic compactness of solutions is obtained by the uniform estimates on the tails of solutions outside a bounded domain. We also examine the limiting behavior of the FitzHugh–Nagumo systems driven by linear colored noise as the correlation time of the colored noise approaches zero. In this respect, we prove that the solutions and the pullback random attractors of the systems driven by linear colored noise converge to that of the corresponding stochastic systems driven by linear white noise.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Bixiang Wang

<p style='text-indent:20px;'>This paper deals with the asymptotic behavior of the non-autonomous random dynamical systems generated by the wave equations with supercritical nonlinearity driven by colored noise defined on <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^n $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ n\le 6 $\end{document}</tex-math></inline-formula>. Based on the uniform Strichartz estimates, we prove the well-posedness of the equation in the natural energy space and define a continuous cocycle associated with the solution operator. We also establish the existence and uniqueness of tempered random attractors of the equation by showing the uniform smallness of the tails of the solutions outside a bounded domain in order to overcome the non-compactness of Sobolev embeddings on unbounded domains.</p>


2020 ◽  
pp. 2050020
Author(s):  
Renhai Wang ◽  
Bixiang Wang

This paper deals with the asymptotic behavior of solutions to non-autonomous, fractional, stochastic [Formula: see text]-Laplacian equations driven by additive white noise and random terms defined on the unbounded domain [Formula: see text]. We first prove the existence and uniqueness of solutions for polynomial drift terms of arbitrary order. We then establish the existence and uniqueness of pullback random attractors for the system in [Formula: see text]. This attractor is further proved to be a bi-spatial [Formula: see text]-attractor for any [Formula: see text], which is compact, measurable in [Formula: see text] and attracts all random subsets of [Formula: see text] with respect to the norm of [Formula: see text]. Finally, we show the robustness of these attractors as the intensity of noise and the random coefficients approach zero. The idea of uniform tail-estimates as well as the method of higher-order estimates on difference of solutions are employed to derive the pullback asymptotic compactness of solutions in [Formula: see text] for [Formula: see text] in order to overcome the non-compactness of Sobolev embeddings on [Formula: see text] and the nonlinearity of the fractional [Formula: see text]-Laplace operator.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Lianbing She ◽  
Mirelson M. Freitas ◽  
Mauricio S. Vinhote ◽  
Renhai Wang

<p style='text-indent:20px;'>This paper is concerned with the asymptotic behavior of solutions to a class of nonlinear coupled discrete wave equations defined on the whole integer set. We first establish the well-posedness of the systems in <inline-formula><tex-math id="M1">\begin{document}$ E: = \ell^2\times\ell^2\times\ell^2\times\ell^2 $\end{document}</tex-math></inline-formula>. We then prove that the solution semigroup has a unique global attractor in <inline-formula><tex-math id="M2">\begin{document}$ E $\end{document}</tex-math></inline-formula>. We finally prove that this attractor can be approximated in terms of upper semicontinuity of <inline-formula><tex-math id="M3">\begin{document}$ E $\end{document}</tex-math></inline-formula> by a finite-dimensional global attractor of a <inline-formula><tex-math id="M4">\begin{document}$ 2(2n+1) $\end{document}</tex-math></inline-formula>-dimensional truncation system as <inline-formula><tex-math id="M5">\begin{document}$ n $\end{document}</tex-math></inline-formula> goes to infinity. The idea of uniform tail-estimates developed by Wang (Phys. D, 128 (1999) 41-52) is employed to prove the asymptotic compactness of the solution semigroups in order to overcome the lack of compactness in infinite lattices.</p>


2021 ◽  
pp. 2150050
Author(s):  
Yiju Chen ◽  
Chunxiao Guo ◽  
Xiaohu Wang

In this paper, we study the Wong–Zakai approximations of a class of second-order stochastic lattice systems with additive noise. We first prove the existence of tempered pullback attractors for lattice systems driven by an approximation of the white noise. Then, we establish the upper semicontinuity of random attractors for the approximate system as the size of approximation approaches zero.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xiaoyao Jia ◽  
Xiaoquan Ding

In this paper, the existence and the upper semicontinuity of a pullback attractor for stochastic retarded 2D-Navier-Stokes equation on a bounded domain are obtained. We first transform the stochastic equation into a random equation and then obtain the existence of a random attractor for random equation. Then conjugation relation between two random dynamical systems implies the existence of a random attractor for the stochastic equation. At last, we get the upper semicontinuity of random attractor.


Sign in / Sign up

Export Citation Format

Share Document