scholarly journals Leucine and α-Ketoisocaproic Acid, but Not Norleucine, Stimulate Skeletal Muscle Protein Synthesis in Neonatal Pigs

2010 ◽  
Vol 140 (8) ◽  
pp. 1418-1424 ◽  
Author(s):  
Jeffery Escobar ◽  
Jason W. Frank ◽  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Cynthia G. Van Horn ◽  
...  
2001 ◽  
Vol 281 (5) ◽  
pp. E908-E915 ◽  
Author(s):  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Jill A. Bush ◽  
Teresa A. Davis

In neonatal animals, feeding stimulates skeletal muscle protein synthesis, a response that declines with development. Both the magnitude of the feeding response and its developmental decline can be reproduced by insulin infusion, suggesting that an altered responsiveness to insulin is a primary determinant of the developmental decline in the stimulation of protein synthesis by feeding. In this study, 7- and 26-day-old pigs were either fasted overnight or fed porcine milk after an overnight fast. We examined the abundance and degree of tyrosine phosphorylation of the insulin receptor (IR), insulin receptor substrate-1 (IRS-1), and IRS-2 in skeletal muscle and, for comparison, liver. We also evaluated the association of IRS-1 and IRS-2 with phosphatidylinositol 3-kinase (PI 3-kinase). The abundance of IR protein in muscle was twofold higher at 7 than at 26 days, but IRS-1 and IRS-2 abundances were similar in muscle of 7- and 26-day-old pigs. The feeding-induced phosphorylations were greater at 7 than at 26 days of age for IR (28- vs. 13-fold), IRS-1 (14- vs. 8-fold), and IRS-2 (21- vs. 12-fold) in muscle. The associations of IRS-1 and IRS-2 with PI 3-kinase were also increased by refeeding to a greater extent at 7 than at 26 days (9- vs. 5-fold and 6- vs. 4-fold, respectively). In liver, the abundance of IR, IRS-1, and IRS-2 was similar at 7 and 26 days of age. Feeding increased the activation of IR, IRS-1, IRS-2, and PI 3-kinase in liver only twofold, and these responses were unaffected by age. Thus our findings demonstrate that the feeding-induced activation of IR, IRS-1, IRS-2, and PI 3-kinase in skeletal muscle decreases with development. Further study is needed to ascertain whether the developmental decline in the feeding-induced activation of early insulin-signaling components contributes to the developmental decline in translation initiation in skeletal muscle.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Claire Boutry ◽  
Agus Suryawan ◽  
Samer W El-Kadi ◽  
Scott M Wheatley ◽  
Renan A Orellana ◽  
...  

2003 ◽  
Vol 284 (1) ◽  
pp. E110-E119 ◽  
Author(s):  
Pamela M. J. O'Connor ◽  
Jill A. Bush ◽  
Agus Suryawan ◽  
Hanh V. Nguyen ◽  
Teresa A. Davis

Infusion of physiological levels of insulin and/or amino acids reproduces the feeding-induced stimulation of muscle protein synthesis in neonates. To determine whether insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonates, insulin secretion was blocked with somatostatin in fasted 7-day-old pigs ( n = 8–12/group) while glucose and glucagon were maintained at fasting levels and insulin was infused to simulate either less than fasting, fasting, intermediate, or fed insulin levels. At each dose of insulin, amino acids were clamped at either the fasting or fed level; at the highest insulin dose, amino acids were also reduced to less than fasting levels. Skeletal muscle protein synthesis was measured using a flooding dose ofl-[4-3H]phenylalanine. Hyperinsulinemia increased protein synthesis in skeletal muscle during hypoaminoacidemia and euaminoacidemia. Hyperaminoacidemia increased muscle protein synthesis during hypoinsulinemia and euinsulinemia. There was a dose-response effect of both insulin and amino acids on muscle protein synthesis. At each insulin dose, hyperaminoacidemia increased muscle protein synthesis. The effects of insulin and amino acids on muscle protein synthesis were largely additive until maximal rates of protein synthesis were achieved. Amino acids enhanced basal protein synthesis rates but did not enhance the sensitivity or responsiveness of muscle protein synthesis to insulin. The results suggest that insulin and amino acids independently stimulate protein synthesis in skeletal muscle of the neonate.


2007 ◽  
Vol 293 (2) ◽  
pp. E595-E603 ◽  
Author(s):  
Asumthia S. Jeyapalan ◽  
Renan A. Orellana ◽  
Agus Suryawan ◽  
Pamela M. J. O'Connor ◽  
Hanh V. Nguyen ◽  
...  

Skeletal muscle protein synthesis is elevated in neonates in part due to an enhanced response to the rise in insulin and amino acids after eating. In vitro studies suggest that glucose plays a role in protein synthesis regulation. To determine whether glucose, independently of insulin and amino acids, is involved in the postprandial rise in skeletal muscle protein synthesis, pancreatic-substrate clamps were performed in neonatal pigs. Insulin secretion was inhibited with somatostatin and insulin was infused to reproduce fasting or fed levels, while glucose and amino acids were clamped at fasting or fed levels. Fractional protein synthesis rates and translational control mechanisms were examined. Raising glucose alone increased protein synthesis in fast-twitch glycolytic muscles but not in other tissues. The response in muscle was associated with increased phosphorylation of protein kinase B (PKB) and enhanced formation of the active eIF4E·eIF4G complex but no change in phosphorylation of AMP-activated protein kinase (AMPK), tuberous sclerosis complex 2 (TSC2), mammalian target of rapamycin (mTOR), 4E-binding protein-1 (4E-BP1), ribosomal protein S6 kinase (S6K1), or eukaryotic elongation factor 2 (eEF2). Raising glucose, insulin, and amino acids increased protein synthesis in most tissues. The response in muscle was associated with phosphorylation of PKB, mTOR, S6K1, and 4E-BP1 and enhanced eIF4E·eIF4G formation. The results suggest that the postprandial rise in glucose, independently of insulin and amino acids, stimulates protein synthesis in neonates, and this response is specific to fast-twitch glycolytic muscle and occurs by AMPK- and mTOR-independent pathways.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Adriana Hernandez‐Garcia ◽  
Daniel Columbus ◽  
Rodrigo Manjarin ◽  
Agus Suryawan ◽  
Hanh Nguyen ◽  
...  

1997 ◽  
Vol 82 (3) ◽  
pp. 807-810 ◽  
Author(s):  
Arny A. Ferrando ◽  
Kevin D. Tipton ◽  
Marcas M. Bamman ◽  
Robert R. Wolfe

Ferrando, Arny A., Kevin D. Tipton, Marcas M. Bamman, and Robert R. Wolfe. Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J. Appl. Physiol. 82(3): 807–810, 1997.—Spaceflight results in a loss of lean body mass and muscular strength. A ground-based model for microgravity, bed rest, results in a loss of lean body mass due to a decrease in muscle protein synthesis (MPS). Resistance training is suggested as a proposed countermeasure for spaceflight-induced atrophy because it is known to increase both MPS and skeletal muscle strength. We therefore hypothesized that scheduled resistance training throughout bed rest would ameliorate the decrease in MPS. Two groups of healthy volunteers were studied during 14 days of simulated microgravity. One group adhered to strict bed rest (BR; n = 5), whereas a second group engaged in leg resistance exercise every other day throughout bed rest (BREx; n = 6). MPS was determined directly by the incorporation of infusedl-[ ring-13C6]phenylalanine into vastus lateralis protein. After 14 days of bed rest, MPS in the BREx group did not change and was significantly greater than in the BR group. Thus moderate-resistance exercise can counteract the decrease in MPS during bed rest.


1991 ◽  
Vol 260 (3) ◽  
pp. E499-E504 ◽  
Author(s):  
D. A. Fryburg ◽  
R. A. Gelfand ◽  
E. J. Barrett

The short-term effects of growth hormone (GH) on skeletal muscle protein synthesis and degradation in normal humans are unknown. We studied seven postabsorptive healthy men (age 18-23 yr) who received GH (0.014 micrograms.kg-1.min-1) via intrabrachial artery infusion for 6 h. The effects of GH on forearm amino acid and glucose balances and on forearm amino acid kinetics [( 3H]Phe and [14C]Leu) were determined after 3 and 6 h of the GH infusion. Forearm deep vein GH rose to 35 +/- 6 ng/ml in response to GH, whereas systemic levels of GH, insulin, and insulin-like growth factor I (IGF-I) were unchanged. Forearm glucose uptake did not change during the study. After 6 h, GH suppressed forearm net release (3 vs. 6 h) of Phe (P less than 0.05), Leu (P less than 0.01), total branched-chain amino acids (P less than 0.025), and essential neutral amino acids (0.05 less than P less than 0.1). The effect on the net balance of Phe and Leu was due to an increase in the tissue uptake for Phe (71%, P less than 0.05) and Leu (37%, P less than 0.005) in the absence of any significant change in release of Phe or Leu from tissue. In the absence of any change in systemic GH, IGF-I, or insulin, these findings suggest that locally infused GH stimulates skeletal muscle protein synthesis. These findings have important physiological implications for both the role of daily GH pulses and the mechanisms through which GH can promote protein anabolism.


Sign in / Sign up

Export Citation Format

Share Document