scholarly journals Development of 5-Trifluoromethylpyrimidine Derivatives as Dual Inhibitors of EGFR and SRC for Cancer Therapy

Heterocycles ◽  
2022 ◽  
Vol 104 (3) ◽  
Author(s):  
Longjia Yan ◽  
Li Liu ◽  
Qin Wang ◽  
Nian Rao ◽  
Yi Le
RSC Advances ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 2342-2350 ◽  
Author(s):  
Jiankang Zhang ◽  
Xiaodong Ma ◽  
Xiaoqing Lv ◽  
Ming Li ◽  
Yanmei Zhao ◽  
...  

A new series of 3-amidoquinoline derivatives were designed, synthesized and evaluated as PI3K/mTOR dual inhibitors.


Author(s):  
Ying-Chao Duan ◽  
Shao-Jie Zhang ◽  
Xiao-Jing Shi ◽  
Lin-Feng Jin ◽  
Tong Yu ◽  
...  

2018 ◽  
Vol 78 (19) ◽  
pp. 5656-5667 ◽  
Author(s):  
Wei Wang ◽  
Jiang-Jiang Qin ◽  
Sukesh Voruganti ◽  
Bhavitavya Nijampatnam ◽  
Sadanandan E. Velu ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1176
Author(s):  
Wei Wang ◽  
Atif Zafar ◽  
Mehrdad Rajaei ◽  
Ruiwen Zhang

The tumor suppressor p53 is believed to be the mostly studied molecule in modern biomedical research. Although p53 interacts with hundreds of molecules to exert its biological functions, there are only a few modulators regulating its expression and function, with murine double minute 2 (MDM2) playing a key role in this regard. MDM2 also contributes to malignant transformation and cancer development through p53-dependent and -independent mechanisms. There is an increasing interest in developing MDM2 inhibitors for cancer prevention and therapy. We recently demonstrated that the nuclear factor of activated T cells 1 (NFAT1) activates MDM2 expression. NFAT1 regulates several cellular functions in cancer cells, such as cell proliferation, migration, invasion, angiogenesis, and drug resistance. Both NFAT isoforms and MDM2 are activated and overexpressed in several cancer subtypes. In addition, a positive correlation exists between NFAT1 and MDM2 in tumor tissues. Our recent clinical study has demonstrated that high expression levels of NFAT1 and MDM2 are independent predictors of a poor prognosis in patients with hepatocellular carcinoma. Thus, inhibition of the NFAT1-MDM2 pathway appears to be a novel potential therapeutic strategy for cancer. In this review, we summarize the potential oncogenic roles of MDM2 and NFAT1 in cancer cells and discuss the efforts of discovery and the development of several newly identified MDM2 and NFAT1 inhibitors, focusing on their potent in vitro and in vivo anticancer activities. This review also highlights strategies and future directions, including the need to focus on the development of more specific and effective NFAT1-MDM2 dual inhibitors for cancer therapy.


2021 ◽  
Author(s):  
Jintong Liu ◽  
Jing Huang ◽  
Lei Zhang ◽  
Jianping Lei

We review the general principle of the design and functional modulation of nanoscaled MOF heterostructures, and biomedical applications in enhanced therapy.


Sign in / Sign up

Export Citation Format

Share Document