scholarly journals Mechanical Vibration Monitoring System Based on Wireless Sensor Network

2018 ◽  
Vol 14 (06) ◽  
pp. 126
Author(s):  
Hongjuan Li ◽  
Gening Xu ◽  
Gelin Xu

<p class="0abstract"><span lang="EN-US">In order to solve the problem of mechanical vibration monitoring, a mechanical vibration monitoring system based on wireless sensor network was designed.</span><span lang="EN-US">First, the requirements of the hardware of the wireless rotating mechanical vibration monitoring system were analyzed. The monitoring node and base station node were designed.</span><span lang="EN-US">Then, based on the VisualBasic6.0 development tool, a software for monitoring the vibration of rotating machinery was designed. It had the functions of command control, data waveform display, and network topology display.</span><span lang="EN-US">In the mode of wireless mechanical vibration monitoring, the organization mode of the network, the transmission mode of data and the corresponding packet transmission format were improved.</span><span lang="EN-US">Finally, the reliable transmission of the data was verified. Compared with the traditional cable vibration sensor, the performance of the monitoring system was verified.</span><span lang="EN-US">The results showed that the wireless vibration monitoring system designed in this paper met the requirements for the monitoring of the vibration state of the rotating machinery.</span></p>

The oil export industry dominates the economy of the world and it depends heavily on oil pipelines. Exposed pipelines are prone to malfunctioning due to intentional or unintentional tampering and vandalism, which is usually caused by damaging form of either knocking or drilling. Continuous structure health monitoring (SHM) of pipelines using conventional methods is difficult and expensive due to the extensive length of the pipelines and the harsh environment. Recent development in printed electronic circuits and microcontrollers open new possibilities in the field of monitoring and have proven their practicality in vibration monitoring process. This paper presents a monitoring system for pipeline heal of the structure based on the wireless sensor network. The system senses the pipeline vibration and relays the data to a base station for the procession. A WSN consists of three nodes is designed and implemented. Each node is built around 32-bit ARM core microcontroller, and equipped with an accelerometer to measure the pipeline vibration. The measurements of each sensor are collected wirelessly through ZigBee protocol to a base station. Results on a 2 m pipeline sample show the ability of the system to precisely detect damaging events e.g. knocking and drilling to the pipeline.


2018 ◽  
Vol 7 (2.23) ◽  
pp. 59 ◽  
Author(s):  
Surinder Singh ◽  
Hardeep Singh Saini

The wireless sensor network has group of sensors which can sense the data and route this data to base station. As there is no physical connection between sensor and base station the important data can be routed without wires. The broadcast nature of wireless sensor network makes it prone to security threat to the valuable data. The attacker node can detect the data by creating their own data aggregation and routing mechanism .The number of attacks can be possible on the network layer. Out of these attacks wormhole is one of the major attack which can change the routing method of the whole wireless sensor network. In this attack,the attacker node can control the packet transmission of whole network and route it to the tunnel of nodes. The major drawback of this attack is to increase the packet drop and disturbing the routing mechanism. A number of security techniques are developed by the researcher to reduce the packet drop ratio and secure the routing mechanism of the network. Out of all thesetechniquesfew related to packet drop ratio are discussed in this paper. TheLightweight countermeasure for the wormhole attack (LITEWORP) based on Dynamic Source routing (DSR) protocol security technique,Delay Per Hop Indication (Delphi) based on AODV(Avoidance Routing Protocol) Protocol security technique and MOBIWORP based on DSRprotocol security technique reduce the packet loss percentage 40%,43% and 35% respectively.   


Due to the recent advancements in the fields of Micro Electromechanical Sensors (MEMS), communication, and operating systems, wireless remote monitoring methods became easy to build and low cost option compared to the conventional methods such as wired cameras and vehicle patrols. Pipeline Monitoring Systems (PMS) benefit the most of such wireless remote monitoring since each pipeline would span for long distances up to hundreds of kilometers. However, precise monitoring requires moving large amounts of data between sensor nodes and base station for processing which require high bandwidth communication protocol. To overcome this problem, In-Situ processing can be practiced by processing the collected data locally at each node instead of the base station. This Paper presents the design and implementation of In-situ pipeline monitoring system for locating damaging activities based on wireless sensor network. The system built upon a WSN of several nodes. Each node contains high computational 1.2GHz Quad-Core ARM Cortex-A53 (64Bit) processor for In-Situ data processing and equipped in 3-axis accelerometer. The proposed system was tested on pipelines in Al-Mussaib gas turbine power plant. During test knocking events are applied at several distances relative to the nodes locations. Data collected at each node are filtered and processed locally in real time in each two adjacent nodes. The results of the estimation is then sent to the supervisor at base-station for display. The results show the proposed system ability to estimate the location of knocking event.


2010 ◽  
Vol 34-35 ◽  
pp. 661-665
Author(s):  
Zhi Peng Feng ◽  
Cheng Zhong Zhang ◽  
Bin Xie ◽  
Jian Wei Cao ◽  
Xue Jun Li

Wireless sensor network overcomes the limitations of conventional tethered measurement techniques. It can be used in many situations where conventional tethered sensors cannot be employed due to the safety requirements, space limitation, and wiring cost. Thus it can further expand testing area, and improve measurement performance. A vibration monitoring system is developed based on wireless sensor network. Its architecture and principle are introduced, and its performance is validated by signal generator simulation and a gearbox vibration test.


Electrician ◽  
2019 ◽  
Vol 13 (3) ◽  
pp. 70-75
Author(s):  
Denny Nugroho ◽  
Rudi Uswarman

Intisari — Bencana alam seperti gerakan tanah atau longsor dapat terjadi pada berbagai skala dan kecepatan. Untuk meminimalkan kerugian akibat bencana tersebut maka dilakukan usaha mengenal tanda-tanda yang mengawali gerakan tanah, atau disebut sebagai mitigasi. Penelitian ini dilakukan untuk merancang wireless sensor network yang mampu mengidentifikasi bencana longsor. Node sensor terdiri dari: sensor getaran, sensor kemiringan lahan, sensor pergeseran lahan, kontroler, dan modul transmisi data. Node-node sensor ini ditanam pada daerah yang rawan longsor dan saling berkomunikasi antara node satu dengan lainnya. Data-data berupa getaran, kemiringan lahan, dan status selalu ditransmisikan ke base station sistem peringatan dini longsor secara realtime. Ketika bencana longsor akan segera terjadi node sensor diharapkan mampu mendeteksi dan mengaktifkan alarm yang ada pada node sensor serta mengirimkan tanda bahaya ke base station. Kata Kunci — longsor, wireless sensor network, node sensor, mikrokontroler   Abstrak — Natural disasters such as land movements or landslides can occur at various scales and speeds. To minimize damages due to the disaster, an effort is made to recognize the signs that initiate soil movements or referred to as mitigation. This research was conducted to design a wireless sensor network that can identify landslides. Sensor nodes consist of vibration sensor, slope sensor, land shift sensor, controller, and data transmission module. These sensor nodes are planted in areas inclined to landslides and communicate with each other between nodes. The data vibration, the slope of the land, and status are always transmitted to the base station of the landslide early warning system in real time. When an landslide will occur soon the sensor node is expected to be able to detect and activate the alarm on the sensor node and send an signal to the base station. Keyword — landslides, wireless sensor networks, sensor nodes, microcontrollers


Sign in / Sign up

Export Citation Format

Share Document