scholarly journals Fault Diagnosis of Rolling Bearing Based on Tunable Q-Factor Wavelet Transform and Convolutional Neural Network

Author(s):  
Liqun Hou ◽  
Zijing Li

Rolling bearing plays an important role in rotary machines and industrial processes. Effective fault diagnosis technology for rolling bearing directly affects the life and operator safety of the devices. In this paper, a fault diagnosis method based on tunable-Q wavelet transform (TQWT) and convolutional neural network (CNN) is proposed to reduce the influence of noise on bearing vibration signal and the dependence on the experience of traditional diagnosis methods. TQWT is used to decompose and denoise the vibration signal, while the CNN is adopted to extract fault features and carry out fault classification. Seven motor operating conditions—normal, drive end rolling ball failure (DE-B), drive end inner raceway failure (DE-IR), drive end outer raceway failure (DE-OR), fan end rolling ball failure (FE-B), fan end inner raceway fault (FE-IR) and fan end outer raceway fault (FE-OR)—are used to evaluate the proposed approach. The experimental results indicate that the fault diagnosis accuracy of the proposed method reaches 99.8%.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Junfeng Guo ◽  
Xingyu Liu ◽  
Shuangxue Li ◽  
Zhiming Wang

As one of the important parts of modern mechanical equipment, the accurate real-time diagnosis of rolling bearing is particularly important. Traditional fault diagnosis methods have some disadvantages, such as low diagnostic accuracy and difficult fault feature extraction. In this paper, a method combining Wavelet transform (WT) and Deformable Convolutional Neural Network (D-CNN) is proposed to realize accurate real-time fault diagnosis of end-to-end rolling bearing. The vibration signal of rolling bearing is taken as the monitoring target. Firstly, the Orthogonal Matching Pursuit (OMP) algorithm is used to remove the harmonic signal and retain the impact signal and noise. Secondly, the time-frequency map of the signal is obtained by time-frequency transform using Wavelet analysis. Finally, the D-CNN is used for feature extraction and classification. The experimental results show that the accuracy of the method can reach 99.9% under various fault modes, and it can accurately identify the fault of rolling bearing.


2021 ◽  
Vol 1207 (1) ◽  
pp. 012003
Author(s):  
Xukun Hou ◽  
Pengjie Hu ◽  
Wenliao Du ◽  
Xiaoyun Gong ◽  
Hongchao Wang ◽  
...  

Abstract Aiming at the typical non-stationary and nonlinear characteristics of rolling bearing vibration signals, a multi-scale convolutional neural network method for bearing fault diagnosis based on wavelet transform and one-dimensional convolutional neural network is proposed. First, the signal is decomposed into multi scale components with wavelet transform, and then each scale component is reconstructed. The reconstructed signal is subjected to the Fourier transform to obtain the frequency spectrum representation, which is used as the input of the one-dimensional convolutional neural network. Finally, one-dimensional convolution neural network is used to learn the features of the input data and recognize the bearing fault. The performance of the model is verified by using data sets of rolling bearing. The results show that this method can intelligent feature extraction and obtain 99.94% diagnostic accuracy.


2020 ◽  
Vol 10 (3) ◽  
pp. 770 ◽  
Author(s):  
Guoqiang Li ◽  
Chao Deng ◽  
Jun Wu ◽  
Zuoyi Chen ◽  
Xuebing Xu

Timely sensing the abnormal condition of the bearings plays a crucial role in ensuring the normal and safe operation of the rotating machine. Most traditional bearing fault diagnosis methods are developed from machine learning, which might rely on the manual design features and prior knowledge of the faults. In this paper, based on the advantages of CNN model, a two-step fault diagnosis method developed from wavelet packet transform (WPT) and convolutional neural network (CNN) is proposed for fault diagnosis of bearings without any manual work. In the first step, the WPT is designed to obtain the wavelet packet coefficients from raw signals, which then are converted into the gray scale images by a designed data-to-image conversion method. In the second step, a CNN model is built to automatically extract the representative features from gray images and implement the fault classification. The performance of the proposed method is evaluated by a real rolling-bearing dataset. From the experimental study, it can be seen the proposed method presents a more superior fault diagnosis capability than other machine-learning-based methods.


2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989721 ◽  
Author(s):  
Changchang Che ◽  
Huawei Wang ◽  
Qiang Fu ◽  
Xiaomei Ni

Rolling bearings are the vital components of rotary machines. The collected data of rolling bearing have strong noise interference, massive unlabeled samples, and different fault features. Thus, a deep transfer learning method is proposed for rolling bearings fault diagnosis under variable operating conditions. To obtain robust feature representation, the denoising autoencoder is used to denoise and reduce dimension of unlabeled rolling bearing signals. For those unlabeled target domain signals, a feature matching method based on multi-kernel maximum mean discrepancies between source domain and target domain is adopted to get enough labeled target domain samples. Then, these rolling bearing signals are converted to multi-dimensional graph samples and fed into a convolutional neural network model for fault diagnosis. To improve the generalization of convolutional neural network under variable operating conditions, we combine model-based transfer learning with feature-based transfer learning to initialize and optimize the convolutional neural network parameters. The effectiveness of the proposed method is validated through several comparative experiments of Case Western Reserve University data. The results demonstrate that the proposed method can learn features adaptively from noisy data and increase the accuracy rate by 2%–8% comparing with other models.


2012 ◽  
Vol 538-541 ◽  
pp. 1956-1961 ◽  
Author(s):  
Jin Min Zhang ◽  
Yin Hua Huang ◽  
Si Ming Wang

Abstract. In order to diagnose the fault of rolling bearing by the vibration signal, a new method of fault diagnosis based on weighted fusion and BP (Back Propagation) neural network was put forward. At first, the vibration signal from the sensors was wave filtered through the method of correlation function, then the fused signal was obtained by the classical adaptive weighted fusion method, the multi-type characteristics parameters was to be as a neural network input. Finally, the fault diagnosis of rolling bearing was realized by the BP neural network, and the results show that the multi-sensor information fusion fault diagnosis method can be proved effectively to achieve the fault diagnosis of rolling bearing.


Sign in / Sign up

Export Citation Format

Share Document