scholarly journals Modeling of Artificial Neural Network for Predicting Specific Heat capacity of working fluid LiBr-H2O used in Vapor Absorption Refrigeration System

Author(s):  
Dheerendra Vikram Singh ◽  
Govind Maheshwari
2020 ◽  
Vol 28 (01) ◽  
pp. 2050006
Author(s):  
Boris Huirem ◽  
Pradeepta Kumar Sahoo

A thermodynamic steady-state model for a single-effect lithium bromide–water (LiBr-H2O)-based vapor absorption refrigeration system of 17.5[Formula: see text]kW capacities has been presented using the first and second laws of thermodynamics. The mass, energy and exergy balance equations in each component of the vapor absorption cycle have been fitted into a computer program to carry out the calculation using the thermo-physical properties of the working fluid. The performance parameters such as coefficient of performance (COP), exergy coefficient of performance (ECOP), total exergy destruction (TED), etc. have been evaluated considering different temperatures in generator and evaporator, different LiBr concentrations in the weak and strong LiBr-H2O solution and different solution heat exchanger effectiveness. The model evaluated the optimum performance parameters like COP, ECOP, TED, etc. of the vapor absorption system by using Design Expert-12 software for an application like on-farm cooling or transit storage of fruits and vegetables.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
T. K. Gogoi

In this paper, an inverse problem is solved for estimating parameters of a steam-driven water–lithium bromide (LiBr) vapor absorption refrigeration system (VARS) using a differential evolution (DE)-based inverse approach. Initially, a forward model simulates the steady-state performance of the VARS at various operating temperatures and evaporator cooling loads (CLs). A DE-based inverse analysis is then performed to estimate the operating parameters taking VARS coefficient of performance (COP), CL, total irreversibility, and exergy efficiency as objective functions (one objective function at a time). DE-based inverse technique estimates the parameters within a very short period of elapsed time. Over 50 and 100 numbers of generations are sufficient for retrieval of COP and exergy efficiency, respectively, while it requires 150 generations for total irreversibility and CL. The study reveals that multiple combinations of parameters within a given range satisfy a particular objective function which serves as design guidelines in selecting appropriate operating parameters.


Author(s):  
Sathiya Satchi Christopher ◽  
Ravichandran Santosh ◽  
Muthuraman Ponrajan Vikram ◽  
Rajendran Prabakaran ◽  
Amrit Kumar Thakur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document