scholarly journals THE EFFECT OF MICROENCAPSULATED PHASE-CHANGE MATERIAL ON THE COMPRESSIVE STRENGTH OF STRUCTURAL CONCRETE

2013 ◽  
Vol 8 (3) ◽  
pp. 116-124 ◽  
Author(s):  
Chad Norvell ◽  
David J. Sailor ◽  
Peter Dusicka

Latent heat energy storage through phase-change materials (PCMs) is one possible strategy to control interior temperatures in buildings, improve thermal comfort, and passively reduce building energy use associated with heating and cooling. While PCMs integrated into building structure elements have been studied since the 1970s, challenges of integrating PCMs into building materials while maintaining their heat storage benefits have limited their application in practice. The recent introduction of microencapsulated phase-change materials provides the energy storage capability of PCMs in micron-scale, chemically-inert capsules that can be easily integrated into composite materials such as gypsum wallboard and concrete. The size and physical properties of microencapsulated PCMs suggest that they will behave similarly to filler materials in concrete. Such filler materials are generally less than 125 μm in diameter and can increase concrete strength when added to a mix. This study uses the compressive strength of hardened concrete mixes with varying amounts of PCM to evaluate the effect of PCM addition on concrete structural integrity.

2020 ◽  
pp. 217-217
Author(s):  
Yichao Zhang ◽  
Ying Wang ◽  
Jinghai Zhou ◽  
Jian Huang ◽  
Xiaoxin Wu ◽  
...  

The thermophysical properties of binary phase change materials with different ratios of capric acid and palmitic acid were studied by step cooling curve method and differential scanning calorimetry in this paper. Furthermore, the best adsorption materials and coating materials were selected by testing their mass adsorption rate and mass loss rate. Finally, the specific heat capacity, thermal conductivity coefficient and compressive strength of phase change energy storage gypsum (PCESG) was determined respectively, and the energy-saving effect of the PCESG in the wall is evaluated. The results show that the binary phase change materials can form a eutectic system. When the mass ratio of capric acid to palmitic acid is 7:3, the low eutectic point of the binary system is formed, and the crystallization temperature of system is 26?C. The adsorption capacity of expanded perlite is much larger than that of ceramsite, and the mass loss rate of the material coated by styrene acrylic emulsion is lower than that of EVA. The specific heat capacity of PCESG is about twice that of ordinary gypsum. With the addition of phase change materials, the thermal conductivity coefficient of PCESG decreases gradually, and the compressive strength of PCESG decreases gradually at the same time. Compared with ordinary gypsum, PCESG has better energy-saving performance.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 335
Author(s):  
Raju Sharma ◽  
Jeong-Gook Jang ◽  
Jong-Wan Hu

The use of phase-change materials (PCM) in concrete has revealed promising results in terms of clean energy storage. However, the negative impact of the interaction between PCM and concrete on the mechanical and durability properties limits field applications, leading to a shift of the research to incorporate PCM into concrete using different techniques to overcome these issues. The storage of clean energy via PCM significantly supports the UN SDG 7 target of affordable and clean energy. Therefore, the present study focuses on three aspects: PCM type, the effect of PCM on concrete properties, and connecting the outcome of PCM concrete composite to the United Nations sustainable development goals (UN SDGs). The compensation of reduction in strength of PCM-contained concrete is possible up to some extent with the use of nanomaterials and supplementary cementitious materials. As PCM-incorporated concrete is categorized a type of building material, the large-scale use of this material will affect the different stages associated with building lifetimes. Therefore, in the present study, the possible amendments of the different associated stages of building lifetimes after the use of PCM-incorporated concrete are discussed and mapped in consideration of the UN SDGs 7, 11, and 12. The current challenges in the widespread use of PCM are lower thermal conductivity, the trade-off between concrete strength and PCM, and absence of the link between the outcome of PCM-concrete composite and UN SDGs. The global prospects of PCM-incorporated concrete as part of the effort to attain the UN SDGs as studied here will motivate architects, designers, practicing engineers, and researchers to accelerate their efforts to promote the consideration of PCM-containing concrete ultimately to attain net zero carbon emissions from building infrastructure for a sustainable future.


2021 ◽  
Vol 236 ◽  
pp. 05006
Author(s):  
Xiangxiang Wu

Phase change materials (PCMs) can be used for thermal energy storage and temperature regulation during phase change, and have broad application prospects in energy-efficient use and energy saving. The compatibility between traditional phase change materials and building materials is too bad to combine in building energy conservation. Therefore, the new phase change materials have become a research focus in the field of phase change energy storage in buildings. In the paper, the research progress of phase change materials in recent years and the optimization and application of passive building energy-saving are reviewed.


Author(s):  
Huimin Yan ◽  
Huning Yang ◽  
Jipeng Luo ◽  
Nan Yin ◽  
Zhicheng Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document