Integration of 3D seismic attributes for preliminary shallow geohazard identification in deep water exploration area with no well data

First Break ◽  
2017 ◽  
Vol 35 (8) ◽  
Author(s):  
Sigit Sukmono ◽  
Vladimir Machado ◽  
Ria Adelina ◽  
Donasita Ambarsari
2002 ◽  
Author(s):  
Steven Clawson ◽  
Hai‐Zui Meng ◽  
Mark Sonnenfeld ◽  
Mike Uland ◽  
Safian Atan ◽  
...  

2014 ◽  
Vol 17 (04) ◽  
pp. 430-435 ◽  
Author(s):  
Oscar Garcia-Pineda ◽  
Ian MacDonald ◽  
William Shedd

Summary Natural hydrocarbon seeps have an important role in the carbon cycle and in the Gulf of Mexico (GOM) ecosystem. The magnitude of these natural oil seeps was analyzed with 3D-seismic attributes in combination with satellite and acoustic data. Hydrocarbon seepage in the deep water of the GOM is associated with deep cutting faults, generated by vertical salt movement, that provide conduits for the upward migration of oil and gas. Seeps transform surface geology and generate prominent geophysical targets that can be identified in 3D-seismic data. Seafloor-amplitude anomalies in plain view correlate with the underlying fault systems. On the basis of 3D-seismic data, detailed mapping of the northern GOM has identified more than 24,000 geophysical anomalies across the basin. In addition to seismic data, synthetic-aperture-radar (SAR) images have proved to be a reliable tool for localizing natural seepage of oil. We used a texture-classifier neural-network algorithm (TCNNA) to process more than 1,200 SAR images collected over the GOM. We quantified more than 1,000 individual seep formations distributed along the outer continental shelf and in deep water. Comparison of the geophysical anomalies with the SAR oil-slick targets shows good general agreement between the distributions of the two indicators. However, there are far fewer active oil seeps than geophysical anomalies, probably because of timing constraints during the basin evolution. Studying the size of the oil slicks on the surface (normalized to weather conditions), we found that the average flux rate of oil (per seep) may be affected by the local change in the baroclinic and barotrophic pressures [e.g., warm core eddies (WCEs) and storms]. We found that oil slicks in the Mississippi Canyon (MC) protraction area tend to be more sensitive to pressure changes than Green Canyon (GC) protraction-area seeps.


2003 ◽  
Author(s):  
Steven Clawson ◽  
Hai‐Zui Meng ◽  
Mark Sonnenfeld ◽  
Mike Uland ◽  
Safian Atan ◽  
...  

2021 ◽  
Author(s):  
Zahra Tajmir Riahi ◽  
Khalil Sarkarinejad ◽  
Ali Faghih ◽  
Bahman Soleimany ◽  
Gholam Reza Payrovian

<p><strong>Abstract</strong></p><p>The detailed characterization of faults and fractures can give valuable information about the fluid flow through petroleum reservoir and directly affect the hydrocarbon exploration and production programs. In this study, large- and small-scale fractures in the Asmari horizon of the Rag-e-Sefid oilfield were characterized using seismic attribute and well data analyses. Different spatial filters including finite median hybrid (SO-FMH), dip-steered median, dip-steered diffusion, and fault enhancement filters were used on 3D seismic data to reduce noise, enhance the seismic data quality, and create a 3D seismic steering cube. In the next step, seismic attributes such as coherency, similarity, variance, spectral decomposition, dip, and curvature were applied to identify structural features. In order to check the validity of these structural features, results from seismic attributes calibrated by the interpreted fractures from image logs in the Rag-e-Safid oilfield. Then, the ant-tracking algorithm applied on the selected seismic attributes to highlight faults and fractures. These attributes combined using neural network method to create multi-seismic attributes, view different fault- or fold-sensitive seismic attributes in a single image, and facilitate the large-scale fractures extraction process. Finally, automatic fault and fracture extraction technique used to reduce human intervention, improve accuracy and efficiency for the large-scale fracture interpretation and extraction from edge volumes in the Asmari horizon of the Rag-e-Sefid oilfield. In addition to, small- scale fractures were characterized by the obtained information from the image logs interpretation for sixteen wells. All the detected fractures from seismic and well data have been divided into eight fracture sets based on their orientation and using the statistical analysis. The obtained results show that fractures characteristics and their origin are different in the northwestern and southeastern parts of the Rag-e-Sefid oilfield. The NW Rag-e-Sefid and Nourooz Hendijan Izeh Faults reactivation during Zagros orogeny led to create the dextral shear zone and P, R, R′, T, Y- fracture sets in the northwestern part of the Rag-e-Safid oilfield. Also, activity of the SE-Rag-e-Sefid thrust fault during Zagros orogeny caused to form fault-related fractures sets in the southeastern part of the Rag-e-Sefid field. In addition to, axial, cross axial, oblique fracture sets in the Asmari horizon of the Rag-e-Sefid oilfield were created by folding phase during Zagros orogeny. The obtained results were used to fracture modeling in the Asmari horizon of the Rag-e-Sefid oilfield.</p>


Sign in / Sign up

Export Citation Format

Share Document