3D Seismic Attributes as Exploration Tools: A Case Study from the Late Jurassic Hanifa Formation in Saudi Arabia

2013 ◽  
Author(s):  
Libin Liu ◽  
Mohammed Kharji ◽  
Himadri S. Chatterjee
2018 ◽  
Vol 49 (3) ◽  
pp. 345-362 ◽  
Author(s):  
Nomqhele Z. Nkosi ◽  
Musa S. D. Manzi ◽  
Oleg Brovko ◽  
Raymond J. Durrheim

Author(s):  
Aniefiok Sylvester Akpan ◽  
Francisca Nneka Okeke ◽  
Daniel Nnaemeka Obiora ◽  
Nyakno Jimmy George

Abstract 3D seismic volume and two well logs data labelled Bonna-6 and Bonna-8 were employed in the inversion process. The data set was simultaneously inverted to produce P- and S-impedances, density, VP −  VS, and PI seismic attributes. An average “c” term value of 1.37 was obtained from the inverse of the slope of the crossplot of P-impedance versus S-impedance for Bonna-6 and Bonna-8 wells. This value was employed in the inversion process to generate the PI attribute, which aided in reducing the non-uniqueness inherent in discriminating the probable reservoir sands. Five seismic attributes slices were generated to ascertain the superiority of each attribute in delineating the probable reservoir sand. These attributes were: density, S-impedance, P-impedance, VP− VS ratio and PI. These attributes reveal low value of density (1.96 − 2.14 g/cc), P-impedance (1.8 × 104 − 2.1 × 104) ft/s*g/cc, S-impedance (9.2 × 103 − 1.1 × 104) ft/s*g/cc, VP − VS (1.65 − 1.72) and PI (4.9 × 103 − 5.1 × 104) ft/s*g/cc around the area inferred to be hydrocarbon saturated reservoir. Although the attributes considered reveals the same zone suspected to be probable hydrocarbon zone, PI gives a better discrimination when compared to other attributes. A distinctive spread and demarcation of the delineated hydrocarbon sand are observed in the PI attribute slice.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1096
Author(s):  
Zhangqing Sun ◽  
Yaguang Liu ◽  
Fuxing Han ◽  
Fengjiao Zhang ◽  
Xiyang Ou ◽  
...  

It is of great significance to quickly obtain the sedimentary characteristics of sandstone type uranium reservoir for guiding prospecting sandstone type uranium deposits. In order to solve this problem, a method based on the extraction and optimization of 3D seismic attributes is proposed. The target stratum of the uranium reservoir is accurately located by using the gamma and acoustic logging data together. The well seismic calibration for the uranium reservoir is carried out by making full use of the logging and seismic data. The high-density fine horizon tracking is implemented for the top, bottom, and obvious adjacent interfaces of the target stratum. Various seismic attributes along the target interface are extracted using stratigraphic slices. Analyzing the consistency between the results obtained by various seismic attributes and drilling data, the one that can best characterize the sedimentary characteristics of the target uranium reservoir is selected as the optimal seismic attribute. The sedimentary and its evolutionary characteristics of the target uranium reservoir are obtained by extracting the above optimal seismic attribute. A case study shows that we can obtain the 3D sedimentary characteristics of the target uranium reservoir fast and efficiently using the method based on the 3D seismic attribute. They can be used for providing important reference information for the exploration of sandstone type uranium deposits.


Sign in / Sign up

Export Citation Format

Share Document