Airborne EM – From Anomaly Hunting to 3D Mapping – A Case From Finland

Author(s):  
H. Vanhala ◽  
I. Suppala
Keyword(s):  
Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 1896-1905 ◽  
Author(s):  
Zhiyi Zhang

A 3D resistivity mapping technique has been developed to provide fast estimates of resistivity distributions in airborne electromagnetic surveys. This proposed 3D mapping method consists of an approximate 3D linear inverse operator and a generalized subspace solver. The 3D inverse operator can be generated using any forward approximation that is linear in resistivity. The generalized subspace method is an alternative to the conjugate gradient method, and it reduces the original large linear system of equations to a much smaller but nonlinear one that is solved iteratively. The major benefit of using generalized subspace methods is that subspace vectors can be built based upon physical principles such as skin and investigation depths. Since the 3D mapping is a linear inverse problem, no iteration, and thus no forward modeling nor sensitivity updating, is needed. The 3D resistivity‐mapping technique can be used directly to estimate 3D resistivity distribution or to provide a model update during an intermediate iteration in a nonlinear 3D inversion. Synthetic and field data examples indicate that the 3D mapping can provide quantitative information about the resistivity and spatial distributions of the 3D targets.


2012 ◽  
Author(s):  
Jennifer A. Eastman ◽  
Kristy S. Hwang ◽  
Sona Babakchanian ◽  
Nicole Chow ◽  
Leslie Ramirez ◽  
...  

1999 ◽  
Vol 38 (06) ◽  
pp. 172-177
Author(s):  
H. Bailer ◽  
Marianne Gwechenberger ◽  
Martha Pruckmayer ◽  
A. Staudenherz ◽  
G. Kronik ◽  
...  

Summary Aim: The simultaneous computation and display of wall motion and perfusion patterns in a single 3D ventricular model would considerably ease the assessment of ECG-gated Tc-99m-sestamibi SPECT, yet the effect on the accuracy of allocating regional perfusion has so far not been validated. Methods: 3D perfusion mapping (3D Perfusion/Motion Map Software) was compared to the visual assessment of ungated tomographic slices and polar perfusion mapping (Cedars-Sinai PTQ) by correlation analysis and receiver operating characteristics (ROC) analysis at different cut-off levels for coronary stenoses in 50 patients (11 single-, 22 two-, 16 three-vessel disease). Ungated SPECT data were obtained by adding the intervals prior to reconstruction and displaying conventional tomographic slices. All display options were visually assessed in 8 ventricular segments according to a 4-point scoring system and compared to the graded results of coronary angiography. Results: All three display options showed a comparable diagnostic performance for the detection of severe stenoses. The diagnostic gain for the detection of stenoses above 59% was highest for ungated tomographic slices, followed by ungated polar mapping and 3D mapping. Regional assessment revealed a limited performance of 3D mapping in the proximal anterior and distal lateral wall. Polar mapping showed a balanced regional performance. Conclusion: 3D Perfusion mapping provides comparable information to conventional display options with the highest diagnostic strength in severe stenoses. Further improvement of the algorithm is needed in the definition of the valve plane.


2019 ◽  
Author(s):  
Garcia-Gimenez Jorge ◽  
Gonzalez Wong Angel ◽  
Gonzalez-Guerrero Cristian ◽  
Iglesias Ainhoa ◽  
Styrers Emily ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1953
Author(s):  
Francisco Martín ◽  
Fernando González ◽  
José Miguel Guerrero ◽  
Manuel Fernández ◽  
Jonatan Ginés

The perception and identification of visual stimuli from the environment is a fundamental capacity of autonomous mobile robots. Current deep learning techniques make it possible to identify and segment objects of interest in an image. This paper presents a novel algorithm to segment the object’s space from a deep segmentation of an image taken by a 3D camera. The proposed approach solves the boundary pixel problem that appears when a direct mapping from segmented pixels to their correspondence in the point cloud is used. We validate our approach by comparing baseline approaches using real images taken by a 3D camera, showing that our method outperforms their results in terms of accuracy and reliability. As an application of the proposed algorithm, we present a semantic mapping approach for a mobile robot’s indoor environments.


Sign in / Sign up

Export Citation Format

Share Document